{"title":"Enhanced Joint Heart and Respiratory Rates Extraction from Functional Near-infrared Spectroscopy Signals Using Cumulative Curve Fitting Approximation.","authors":"Navid Adib, Seyed Kamaledin Setarehdan, Shirin Ashtari Tondashti, Mahdis Yaghoubi","doi":"10.4103/jmss.jmss_48_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Functional near-infrared spectroscopy (fNIRS) is a valuable neuroimaging tool that captures cerebral hemodynamic during various brain tasks. However, fNIRS data usually suffer physiological artifacts. As a matter of fact, these physiological artifacts are rich in valuable physiological information.</p><p><strong>Methods: </strong>Leveraging this, our study presents a novel algorithm for extracting heart and respiratory rates (RRs) from fNIRS signals using a nonstationary, nonlinear filtering approach called cumulative curve fitting approximation. To enhance the accuracy of heart peak localization, a novel real-time method based on polynomial fitting was implemented, addressing the limitations of the 10 Hz temporal resolution in fNIRS. Simultaneous recordings of fNIRS, electrocardiogram (ECG), and respiration using a chest band strain gauge sensor were obtained from 15 subjects during a respiration task. Two-thirds of the subjects' data were used for the training procedure, employing a 5-fold cross-validation approach, while the remaining subjects were completely unseen and reserved for final testing.</p><p><strong>Results: </strong>The results demonstrated a strong correlation (<i>r</i> > 0.92, Bland-Altman Ratio <6%) between heart rate variability derived from fNIRS and ECG signals. Moreover, the low mean absolute error (0.18 s) in estimating the respiration period emphasizes the feasibility of the proposed method for RR estimation from fNIRS data. In addition, paired <i>t</i>-tests showed no significant difference between respiration rates estimated from the fNIRS-based measurements and those from the respiration sensor for each subject (<i>P</i> > 0.05).</p><p><strong>Conclusion: </strong>This study highlights fNIRS as a powerful tool for noninvasive extraction of heart and RRs alongside brain signals. The findings pave the way for developing lightweight, cost-effective wearable devices that can simultaneously monitor hemodynamic, heart, and respiratory activity, enhancing comfort and portability for health monitoring applications.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"15 ","pages":"15"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105807/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_48_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Functional near-infrared spectroscopy (fNIRS) is a valuable neuroimaging tool that captures cerebral hemodynamic during various brain tasks. However, fNIRS data usually suffer physiological artifacts. As a matter of fact, these physiological artifacts are rich in valuable physiological information.
Methods: Leveraging this, our study presents a novel algorithm for extracting heart and respiratory rates (RRs) from fNIRS signals using a nonstationary, nonlinear filtering approach called cumulative curve fitting approximation. To enhance the accuracy of heart peak localization, a novel real-time method based on polynomial fitting was implemented, addressing the limitations of the 10 Hz temporal resolution in fNIRS. Simultaneous recordings of fNIRS, electrocardiogram (ECG), and respiration using a chest band strain gauge sensor were obtained from 15 subjects during a respiration task. Two-thirds of the subjects' data were used for the training procedure, employing a 5-fold cross-validation approach, while the remaining subjects were completely unseen and reserved for final testing.
Results: The results demonstrated a strong correlation (r > 0.92, Bland-Altman Ratio <6%) between heart rate variability derived from fNIRS and ECG signals. Moreover, the low mean absolute error (0.18 s) in estimating the respiration period emphasizes the feasibility of the proposed method for RR estimation from fNIRS data. In addition, paired t-tests showed no significant difference between respiration rates estimated from the fNIRS-based measurements and those from the respiration sensor for each subject (P > 0.05).
Conclusion: This study highlights fNIRS as a powerful tool for noninvasive extraction of heart and RRs alongside brain signals. The findings pave the way for developing lightweight, cost-effective wearable devices that can simultaneously monitor hemodynamic, heart, and respiratory activity, enhancing comfort and portability for health monitoring applications.
期刊介绍:
JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.