{"title":"Weighted Euclidean balancing for a matrix exposure in estimating causal effect.","authors":"Juan Chen, Yingchun Zhou","doi":"10.1515/ijb-2024-0021","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing complexity of data, researchers in various fields have become increasingly interested in estimating the causal effect of a matrix exposure, which involves complex multivariate treatments, on an outcome. Balancing covariates for the matrix exposure is essential to achieve this goal. While exact balancing and approximate balancing methods have been proposed for multiple balancing constraints, dealing with a matrix treatment introduces a large number of constraints, making it challenging to achieve exact balance or select suitable threshold parameters for approximate balancing methods. To address this challenge, the weighted Euclidean balancing method is proposed, which offers an approximate balance of covariates from an overall perspective. In this study, both parametric and nonparametric methods for estimating the causal effect of a matrix treatment is proposed, along with providing theoretical properties of the two estimations. To validate the effectiveness of our approach, extensive simulation results demonstrate that the proposed method outperforms alternative approaches across various scenarios. Finally, we apply the method to analyze the causal impact of the omics variables on the drug sensitivity of Vandetanib. The results indicate that EGFR CNV has a significant positive causal effect on Vandetanib efficacy, whereas EGFR methylation exerts a significant negative causal effect.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2024-0021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing complexity of data, researchers in various fields have become increasingly interested in estimating the causal effect of a matrix exposure, which involves complex multivariate treatments, on an outcome. Balancing covariates for the matrix exposure is essential to achieve this goal. While exact balancing and approximate balancing methods have been proposed for multiple balancing constraints, dealing with a matrix treatment introduces a large number of constraints, making it challenging to achieve exact balance or select suitable threshold parameters for approximate balancing methods. To address this challenge, the weighted Euclidean balancing method is proposed, which offers an approximate balance of covariates from an overall perspective. In this study, both parametric and nonparametric methods for estimating the causal effect of a matrix treatment is proposed, along with providing theoretical properties of the two estimations. To validate the effectiveness of our approach, extensive simulation results demonstrate that the proposed method outperforms alternative approaches across various scenarios. Finally, we apply the method to analyze the causal impact of the omics variables on the drug sensitivity of Vandetanib. The results indicate that EGFR CNV has a significant positive causal effect on Vandetanib efficacy, whereas EGFR methylation exerts a significant negative causal effect.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.