"ShapeNet": A Shape Regression Convolutional Neural Network Ensemble Applied to the Segmentation of the Left Ventricle in Echocardiography.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Eduardo Galicia Gómez, Fabián Torres-Robles, Jorge Perez-Gonzalez, Fernando Arámbula Cosío
{"title":"\"ShapeNet\": A Shape Regression Convolutional Neural Network Ensemble Applied to the Segmentation of the Left Ventricle in Echocardiography.","authors":"Eduardo Galicia Gómez, Fabián Torres-Robles, Jorge Perez-Gonzalez, Fernando Arámbula Cosío","doi":"10.3390/jimaging11050165","DOIUrl":null,"url":null,"abstract":"<p><p>Left ventricle (LV) segmentation is crucial for cardiac diagnosis but remains challenging in echocardiography. We present ShapeNet, a fully automatic method combining a convolutional neural network (CNN) ensemble with an improved active shape model (ASM). ShapeNet predicts optimal pose (rotation, translation, and scale) and shape parameters, which are refined using the improved ASM. The ASM optimizes an objective function constructed from gray-level profiles concatenated into a single contour appearance vector. The model was trained on 4800 augmented CAMUS images and tested on both CAMUS and EchoNet databases. It achieved a Dice coefficient of 0.87 and a Hausdorff Distance (HD) of 4.08 pixels on CAMUS, and a Dice coefficient of 0.81 with an HD of 10.21 pixels on EchoNet, demonstrating robust performance across datasets. These results highlight the improved accuracy in HD compared to previous semantic and shape-based segmentation methods by generating statistically valid LV contours from ultrasound images.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12112286/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11050165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Left ventricle (LV) segmentation is crucial for cardiac diagnosis but remains challenging in echocardiography. We present ShapeNet, a fully automatic method combining a convolutional neural network (CNN) ensemble with an improved active shape model (ASM). ShapeNet predicts optimal pose (rotation, translation, and scale) and shape parameters, which are refined using the improved ASM. The ASM optimizes an objective function constructed from gray-level profiles concatenated into a single contour appearance vector. The model was trained on 4800 augmented CAMUS images and tested on both CAMUS and EchoNet databases. It achieved a Dice coefficient of 0.87 and a Hausdorff Distance (HD) of 4.08 pixels on CAMUS, and a Dice coefficient of 0.81 with an HD of 10.21 pixels on EchoNet, demonstrating robust performance across datasets. These results highlight the improved accuracy in HD compared to previous semantic and shape-based segmentation methods by generating statistically valid LV contours from ultrasound images.

“ShapeNet”:一种用于超声心动图左心室分割的形状回归卷积神经网络集成。
左心室(LV)分割是心脏诊断的关键,但在超声心动图中仍然具有挑战性。我们提出了ShapeNet,一种将卷积神经网络(CNN)集成与改进的主动形状模型(ASM)相结合的全自动方法。ShapeNet预测最佳姿势(旋转,平移和缩放)和形状参数,这些参数使用改进的ASM进行细化。ASM优化了由灰度级轮廓拼接成单个轮廓外观向量的目标函数。该模型在4800张增强CAMUS图像上进行了训练,并在CAMUS和EchoNet数据库上进行了测试。它在CAMUS上实现了0.87的Dice系数和4.08像素的Hausdorff Distance (HD),在EchoNet上实现了0.81的Dice系数和10.21像素的HD,展示了跨数据集的稳健性能。这些结果表明,通过从超声图像中生成统计有效的LV轮廓,与之前基于语义和形状的分割方法相比,HD的准确性得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信