Yu Bai, Li Li, Shanqing Zhang, Jianfeng Lu, Ting Luo
{"title":"IEWNet: Multi-Scale Robust Watermarking Network Against Infrared Image Enhancement Attacks.","authors":"Yu Bai, Li Li, Shanqing Zhang, Jianfeng Lu, Ting Luo","doi":"10.3390/jimaging11050171","DOIUrl":null,"url":null,"abstract":"<p><p>Infrared (IR) images record the temperature radiation distribution of the object being captured. The hue and color difference in the image reflect the caloric and temperature difference, respectively. However, due to the thermal diffusion effect, the target information in IR images can be relatively large and the objects' boundaries are blurred. Therefore, IR images may undergo some image enhancement operations prior to use in relevant application scenarios. Furthermore, Infrared Enhancement (IRE) algorithms have a negative impact on the watermarking information embedded into the IR image in most cases. In this paper, we propose a novel multi-scale robust watermarking model under IRE attack, called IEWNet. This model trains a preprocessing module for extracting image features based on the conventional Undecimated Dual Tree Complex Wavelet Transform (UDTCWT). Furthermore, we consider developing a noise layer with a focus on four deep learning and eight classical attacks, and all of these attacks are based on IRE algorithms. Moreover, we add a noise layer or an enhancement module between the encoder and decoder according to the application scenarios. The results of the imperceptibility experiments on six public datasets prove that the Peak Signal to Noise Ratio (PSNR) is usually higher than 40 dB. The robustness of the algorithms is also better than the existing state-of-the-art image watermarking algorithms used in the performance evaluation comparison.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11050171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared (IR) images record the temperature radiation distribution of the object being captured. The hue and color difference in the image reflect the caloric and temperature difference, respectively. However, due to the thermal diffusion effect, the target information in IR images can be relatively large and the objects' boundaries are blurred. Therefore, IR images may undergo some image enhancement operations prior to use in relevant application scenarios. Furthermore, Infrared Enhancement (IRE) algorithms have a negative impact on the watermarking information embedded into the IR image in most cases. In this paper, we propose a novel multi-scale robust watermarking model under IRE attack, called IEWNet. This model trains a preprocessing module for extracting image features based on the conventional Undecimated Dual Tree Complex Wavelet Transform (UDTCWT). Furthermore, we consider developing a noise layer with a focus on four deep learning and eight classical attacks, and all of these attacks are based on IRE algorithms. Moreover, we add a noise layer or an enhancement module between the encoder and decoder according to the application scenarios. The results of the imperceptibility experiments on six public datasets prove that the Peak Signal to Noise Ratio (PSNR) is usually higher than 40 dB. The robustness of the algorithms is also better than the existing state-of-the-art image watermarking algorithms used in the performance evaluation comparison.