Nathan T Riek, Murat Akcakaya, Zeineb Bouzid, Tanmay Gokhale, Stephanie Helman, Karina Kraevsky-Philips, Rui Qi Ji, Ervin Sejdic, Jessica K Zegre-Hemsey, Christian Martin-Gill, Clifton W Callaway, Samir Saba, Salah Al-Zaiti
{"title":"ECG-SMART-NET: A Deep Learning Architecture for Precise ECG Diagnosis of Occlusion Myocardial Infarction.","authors":"Nathan T Riek, Murat Akcakaya, Zeineb Bouzid, Tanmay Gokhale, Stephanie Helman, Karina Kraevsky-Philips, Rui Qi Ji, Ervin Sejdic, Jessica K Zegre-Hemsey, Christian Martin-Gill, Clifton W Callaway, Samir Saba, Salah Al-Zaiti","doi":"10.1109/TBME.2025.3573581","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In this paper we develop and evaluate ECG-SMART-NET for occlusion myocardial infarction (OMI) identification. OMI is a severe form of heart attack characterized by complete blockage of one or more coronary arteries requiring immediate referral for cardiac catheterization to restore blood flow to the heart. Two thirds of OMI cases are difficult to visually identify from a 12-lead electrocardiogram (ECG) and can be potentially fatal if not identified quickly. Previous works on this topic are scarce, and current state-of-the-art evidence suggests both feature-based random forests and convolutional neural networks (CNNs) are promising approaches to improve ECG detection of OMI.</p><p><strong>Methods: </strong>While the ResNet architecture has been adapted for use with ECG recordings, it is not ideally suited to capture informative temporal features within each lead and the spatial concordance or discordance across leads. We propose a clinically informed modification of the ResNet-18 architecture. The model first learns temporal features through temporal convolutional layers with 1xk kernels followed by a spatial convolutional layer, after the residual blocks, with 12x1 kernels to learn spatial features.</p><p><strong>Results: </strong>ECG-SMART-NET was benchmarked against the original ResNet-18 and other state-of-the-art models on a multisite real-word clinical dataset that consists of 10,393 ECGs from 7,397 unique patients (rate of OMI = 7.2%). ECG-SMART-NET outperformed other models in the classification of OMI with a test AUC of 0.953 [0.921, 0.978].</p><p><strong>Conclusion and significance: </strong>ECG-SMART-NET can outperform the state-of-the-art random forest for OMI prediction and is better suited for this task than the original ResNet-18 architecture.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3573581","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: In this paper we develop and evaluate ECG-SMART-NET for occlusion myocardial infarction (OMI) identification. OMI is a severe form of heart attack characterized by complete blockage of one or more coronary arteries requiring immediate referral for cardiac catheterization to restore blood flow to the heart. Two thirds of OMI cases are difficult to visually identify from a 12-lead electrocardiogram (ECG) and can be potentially fatal if not identified quickly. Previous works on this topic are scarce, and current state-of-the-art evidence suggests both feature-based random forests and convolutional neural networks (CNNs) are promising approaches to improve ECG detection of OMI.
Methods: While the ResNet architecture has been adapted for use with ECG recordings, it is not ideally suited to capture informative temporal features within each lead and the spatial concordance or discordance across leads. We propose a clinically informed modification of the ResNet-18 architecture. The model first learns temporal features through temporal convolutional layers with 1xk kernels followed by a spatial convolutional layer, after the residual blocks, with 12x1 kernels to learn spatial features.
Results: ECG-SMART-NET was benchmarked against the original ResNet-18 and other state-of-the-art models on a multisite real-word clinical dataset that consists of 10,393 ECGs from 7,397 unique patients (rate of OMI = 7.2%). ECG-SMART-NET outperformed other models in the classification of OMI with a test AUC of 0.953 [0.921, 0.978].
Conclusion and significance: ECG-SMART-NET can outperform the state-of-the-art random forest for OMI prediction and is better suited for this task than the original ResNet-18 architecture.
期刊介绍:
IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.