Tekan Singh Rana, Rishipal Rastrapal Bansode, Jenny Pakhrin Rana, Leonard L Williams
{"title":"MicroRNA expression and their molecular targets in food allergies: a systematic review.","authors":"Tekan Singh Rana, Rishipal Rastrapal Bansode, Jenny Pakhrin Rana, Leonard L Williams","doi":"10.3389/fimmu.2025.1524392","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>MicroRNAs (miRs) play an essential role in adaptive and innate immune systems by regulating the development of immune cells. However, detailed studies of miRs' role in food allergies are scarce compared to those of other allergic or non- allergic diseases. This systematic review aims to study miRs expression and its role in food allergies (FAs) and determine the signature miRs in FAs.</p><p><strong>Method: </strong>Research articles published since 2015 were selected from various databases: Scopus, PubMed, ScienceDirect, and Web of Science. Randomized clinical trials, observational clinical studies, and <i>in vivo</i> studies were assessed via the Cochrane Risk of Bias 2 tool, the Newcastle-Ottawa scale, and SYRCLE method, respectively. The characteristics of the included studies, population characteristics, and experimental details were extracted, and the data were synthesized narratively.</p><p><strong>Result: </strong>MiRs expression had been investigated in the context of cow milk allergy (CMA) and peanut allergy (PA) through both <i>in vivo</i> studies and clinical trials. Clinical trials included allergies to multiple combined foods, individual foods (such as milk, peanut, and what), and drugs and venom, while <i>in vivo</i> studies were conducted on milk, egg, and peanut allergies. MiR-146a, miR- 155, and miR-30a-5p were common miRs between <i>in vivo</i> studies and clinical trials. Moreover, few miRs were commonly studied between different types of food allergies. In clinical trials, miR-143-3p was studied in peanut allergy and non-celiac wheat sensitivity (NCWS), and miR-155 was studied in CMA and egg allergy in <i>in vivo</i> studies. Furthermore, the same miRs varied on their molecular target and effect depending on the type of food allergy.</p><p><strong>Discussion: </strong>The study on signature miRs and their molecular target determination for the therapeutic purpose of food allergy is in its initial stage. For individual food allergies, miRs determination via next-generation sequencing (NGS), their validation via polymerase chain reaction (PCR), and target molecule determination via RNA interference (RNAi) should be the focus of future studies in order to determine reliable signature miRs of food allergy.</p>","PeriodicalId":12622,"journal":{"name":"Frontiers in Immunology","volume":"16 ","pages":"1524392"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fimmu.2025.1524392","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: MicroRNAs (miRs) play an essential role in adaptive and innate immune systems by regulating the development of immune cells. However, detailed studies of miRs' role in food allergies are scarce compared to those of other allergic or non- allergic diseases. This systematic review aims to study miRs expression and its role in food allergies (FAs) and determine the signature miRs in FAs.
Method: Research articles published since 2015 were selected from various databases: Scopus, PubMed, ScienceDirect, and Web of Science. Randomized clinical trials, observational clinical studies, and in vivo studies were assessed via the Cochrane Risk of Bias 2 tool, the Newcastle-Ottawa scale, and SYRCLE method, respectively. The characteristics of the included studies, population characteristics, and experimental details were extracted, and the data were synthesized narratively.
Result: MiRs expression had been investigated in the context of cow milk allergy (CMA) and peanut allergy (PA) through both in vivo studies and clinical trials. Clinical trials included allergies to multiple combined foods, individual foods (such as milk, peanut, and what), and drugs and venom, while in vivo studies were conducted on milk, egg, and peanut allergies. MiR-146a, miR- 155, and miR-30a-5p were common miRs between in vivo studies and clinical trials. Moreover, few miRs were commonly studied between different types of food allergies. In clinical trials, miR-143-3p was studied in peanut allergy and non-celiac wheat sensitivity (NCWS), and miR-155 was studied in CMA and egg allergy in in vivo studies. Furthermore, the same miRs varied on their molecular target and effect depending on the type of food allergy.
Discussion: The study on signature miRs and their molecular target determination for the therapeutic purpose of food allergy is in its initial stage. For individual food allergies, miRs determination via next-generation sequencing (NGS), their validation via polymerase chain reaction (PCR), and target molecule determination via RNA interference (RNAi) should be the focus of future studies in order to determine reliable signature miRs of food allergy.
期刊介绍:
Frontiers in Immunology is a leading journal in its field, publishing rigorously peer-reviewed research across basic, translational and clinical immunology. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Immunology is the official Journal of the International Union of Immunological Societies (IUIS). Encompassing the entire field of Immunology, this journal welcomes papers that investigate basic mechanisms of immune system development and function, with a particular emphasis given to the description of the clinical and immunological phenotype of human immune disorders, and on the definition of their molecular basis.