A Kv2 inhibitor combination reveals native neuronal conductances consistent with Kv2/KvS heteromers.

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2025-05-27 DOI:10.7554/eLife.99410
Robert G Stewart, Matthew James Marquis, Sooyeon Jo, Brandon J Harris, Aman S Aberra, Verity Cook, Zachary Whiddon, Vladimir Yarov-Yarovoy, Michael Ferns, Jon T Sack
{"title":"A Kv2 inhibitor combination reveals native neuronal conductances consistent with Kv2/KvS heteromers.","authors":"Robert G Stewart, Matthew James Marquis, Sooyeon Jo, Brandon J Harris, Aman S Aberra, Verity Cook, Zachary Whiddon, Vladimir Yarov-Yarovoy, Michael Ferns, Jon T Sack","doi":"10.7554/eLife.99410","DOIUrl":null,"url":null,"abstract":"<p><p>KvS proteins are voltage-gated potassium channel subunits that form functional channels when assembled into heteromers with Kv2.1 (<i>KCNB1</i>) or Kv2.2 (<i>KCNB2</i>). Mammals have 10 KvS subunits: Kv5.1 (<i>KCNF1</i>), Kv6.1 (<i>KCNG1</i>), Kv6.2 (<i>KCNG2</i>), Kv6.3 (<i>KCNG3</i>), Kv6.4 (<i>KCNG4</i>), Kv8.1 (<i>KCNV1</i>), Kv8.2 (<i>KCNV2</i>), Kv9.1 (<i>KCNS1</i>), Kv9.2 (<i>KCNS2</i>), and Kv9.3 (<i>KCNS3</i>). Electrically excitable cells broadly express channels containing Kv2 subunits and most neurons have substantial Kv2 conductance. However, whether KvS subunits contribute to these conductances has not been clear, leaving the physiological roles of KvS subunits poorly understood. Here, we identify that two potent Kv2 inhibitors, used in combination, can distinguish conductances of Kv2/KvS heteromers and Kv2-only channels. We find that Kv5, Kv6, Kv8, or Kv9-containing channels are resistant to the Kv2-selective pore-blocker RY785 yet remain sensitive to the Kv2-selective voltage sensor modulator guangxitoxin-1E (GxTX). Using these inhibitors in mouse superior cervical ganglion neurons, we find predominantly RY785-sensitive conductances consistent with channels composed entirely of Kv2 subunits. In contrast, RY785-resistant but GxTX-sensitive conductances consistent with Kv2/KvS heteromeric channels predominate in mouse and human dorsal root ganglion neurons. These results establish an approach to pharmacologically distinguish conductances of Kv2/KvS heteromers from Kv2-only channels, enabling investigation of the physiological roles of endogenous KvS subunits. These findings suggest that drugs which distinguish KvS subunits could modulate electrical activity of subsets of Kv2-expressing cell types.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113274/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.99410","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

KvS proteins are voltage-gated potassium channel subunits that form functional channels when assembled into heteromers with Kv2.1 (KCNB1) or Kv2.2 (KCNB2). Mammals have 10 KvS subunits: Kv5.1 (KCNF1), Kv6.1 (KCNG1), Kv6.2 (KCNG2), Kv6.3 (KCNG3), Kv6.4 (KCNG4), Kv8.1 (KCNV1), Kv8.2 (KCNV2), Kv9.1 (KCNS1), Kv9.2 (KCNS2), and Kv9.3 (KCNS3). Electrically excitable cells broadly express channels containing Kv2 subunits and most neurons have substantial Kv2 conductance. However, whether KvS subunits contribute to these conductances has not been clear, leaving the physiological roles of KvS subunits poorly understood. Here, we identify that two potent Kv2 inhibitors, used in combination, can distinguish conductances of Kv2/KvS heteromers and Kv2-only channels. We find that Kv5, Kv6, Kv8, or Kv9-containing channels are resistant to the Kv2-selective pore-blocker RY785 yet remain sensitive to the Kv2-selective voltage sensor modulator guangxitoxin-1E (GxTX). Using these inhibitors in mouse superior cervical ganglion neurons, we find predominantly RY785-sensitive conductances consistent with channels composed entirely of Kv2 subunits. In contrast, RY785-resistant but GxTX-sensitive conductances consistent with Kv2/KvS heteromeric channels predominate in mouse and human dorsal root ganglion neurons. These results establish an approach to pharmacologically distinguish conductances of Kv2/KvS heteromers from Kv2-only channels, enabling investigation of the physiological roles of endogenous KvS subunits. These findings suggest that drugs which distinguish KvS subunits could modulate electrical activity of subsets of Kv2-expressing cell types.

Kv2抑制剂组合显示天然神经元电导与Kv2/ kv异构体一致。
KvS蛋白是电压门控钾通道亚基,当与Kv2.1 (KCNB1)或Kv2.2 (KCNB2)组装成异聚体时,可形成功能通道。哺乳动物有10个kv亚基:Kv5.1 (KCNF1)、Kv6.1 (KCNG1)、Kv6.2 (KCNG2)、Kv6.3 (KCNG3)、Kv6.4 (KCNG4)、Kv8.1 (KCNV1)、Kv8.2 (KCNV2)、Kv9.1 (KCNS1)、Kv9.2 (KCNS2)和Kv9.3 (KCNS3)。电兴奋细胞广泛表达含有Kv2亚基的通道,大多数神经元具有大量的Kv2电导。然而,kv亚基是否参与这些传导尚不清楚,因此对kv亚基的生理作用知之甚少。在这里,我们发现两种有效的Kv2抑制剂,联合使用,可以区分Kv2/ kv异构体和Kv2通道的电导。我们发现,Kv5、Kv6、Kv8或含有kv9的通道对kv2选择性孔阻滞剂RY785具有抗性,但对kv2选择性电压传感器调制器guangxitoxin-1E (GxTX)仍然敏感。在小鼠上颈神经节神经元中使用这些抑制剂,我们发现ry785敏感的电导主要与完全由Kv2亚基组成的通道一致。相比之下,ry785抗性但与Kv2/ kv异质通道一致的gxtx敏感电导在小鼠和人类背根神经节神经元中占主导地位。这些结果建立了一种从药理学上区分Kv2/ kv异聚体与Kv2通道传导的方法,从而可以研究内源性kv亚基的生理作用。这些发现表明,区分KvS亚单位的药物可以调节表达kv2的细胞亚群的电活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信