A dissipative mass conserved reaction-diffusion system reveals switching between coexisting polar and oscillatory cell motility states.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-05-01 DOI:10.1063/5.0274689
Jack M Hughes, Cristina Martinez-Torres, Carsten Beta, Leah Edelstein-Keshet, Arik Yochelis
{"title":"A dissipative mass conserved reaction-diffusion system reveals switching between coexisting polar and oscillatory cell motility states.","authors":"Jack M Hughes, Cristina Martinez-Torres, Carsten Beta, Leah Edelstein-Keshet, Arik Yochelis","doi":"10.1063/5.0274689","DOIUrl":null,"url":null,"abstract":"<p><p>Motile eukaryotic cells display distinct modes of migration that often occur within the same cell type. It remains unclear, however, whether transitions between the migratory modes require changes in external conditions, or whether the different modes are coexisting states that emerge from the underlying signaling network. Using a simplified mass-conserved reaction-diffusion model of small GTPase signaling with F-actin mediated feedback, we uncover a distinct bistable mechanism (involving gradient-like phase-separation and traveling waves) and a regime where a polarized mode of migration coexists with spatiotemporal oscillations; the latter, in larger domains, including in three-dimensional surface geometry, result in disordered patterns even in the absence of noise or shape deformations. Indeed, experimental observations of Dictyostelium discoideum show that, upon collision with a rigid boundary, cells may switch from polarized to disordered motion.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0274689","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Motile eukaryotic cells display distinct modes of migration that often occur within the same cell type. It remains unclear, however, whether transitions between the migratory modes require changes in external conditions, or whether the different modes are coexisting states that emerge from the underlying signaling network. Using a simplified mass-conserved reaction-diffusion model of small GTPase signaling with F-actin mediated feedback, we uncover a distinct bistable mechanism (involving gradient-like phase-separation and traveling waves) and a regime where a polarized mode of migration coexists with spatiotemporal oscillations; the latter, in larger domains, including in three-dimensional surface geometry, result in disordered patterns even in the absence of noise or shape deformations. Indeed, experimental observations of Dictyostelium discoideum show that, upon collision with a rigid boundary, cells may switch from polarized to disordered motion.

耗散质量守恒的反应扩散系统揭示了共存的极性和振荡细胞运动状态之间的切换。
可运动的真核细胞表现出不同的迁移模式,通常发生在同一细胞类型中。然而,尚不清楚迁移模式之间的转换是否需要外部条件的改变,或者不同模式是否从底层信号网络中出现共存状态。利用f -肌动蛋白介导反馈的小GTPase信号的简化质量守恒反应-扩散模型,我们揭示了一个独特的双稳态机制(包括梯度相分离和行波)和一个极化迁移模式与时空振荡共存的制度;后者在更大的领域,包括三维表面几何,即使在没有噪声或形状变形的情况下也会导致无序的图案。事实上,对盘状盘基骨的实验观察表明,在与刚性边界碰撞时,细胞可能从极化转变为无序运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信