Functional and structural analyses of amino acid sequence variation in PDC β-lactamase reveal different mechanistic pathways toward cefiderocol resistance in Pseudomonas aeruginosa.

IF 4.1 2区 医学 Q2 MICROBIOLOGY
Lucía González-Pinto, María Antonia Gomis-Font, Emilio Lence, Michelle Outeda-García, Tania Blanco-Martín, Salud Rodríguez-Pallares, Lucía Sánchez-Peña, Isaac Alonso-García, Juan Carlos Vázquez-Ucha, Alejandro Beceiro, Germán Bou, Concepción González-Bello, Antonio Oliver, Jorge Arca-Suárez
{"title":"Functional and structural analyses of amino acid sequence variation in PDC β-lactamase reveal different mechanistic pathways toward cefiderocol resistance in <i>Pseudomonas aeruginosa</i>.","authors":"Lucía González-Pinto, María Antonia Gomis-Font, Emilio Lence, Michelle Outeda-García, Tania Blanco-Martín, Salud Rodríguez-Pallares, Lucía Sánchez-Peña, Isaac Alonso-García, Juan Carlos Vázquez-Ucha, Alejandro Beceiro, Germán Bou, Concepción González-Bello, Antonio Oliver, Jorge Arca-Suárez","doi":"10.1128/aac.00292-25","DOIUrl":null,"url":null,"abstract":"<p><p>A wide variety of clinically observed amino acid alterations in the <i>Pseudomonas aeruginosa</i> chromosomal β-lactamase AmpC (<i>Pseudomonas</i>-derived cephalosporinase [PDC]) are associated with increased resistance to cefepime, ceftolozane/tazobactam, or ceftazidime/avibactam, but their impact on cefiderocol resistance is unclear. We took advantage of a previously engineered collection of wild-type (PAO1) and iron uptake-deficient (PAO Δ<i>piuC</i>) <i>P. aeruginosa</i> isolates producing 19 distinct PDC variants with substitutions in key catalytic regions. While most variants had moderate effects on cefiderocol minimum inhibitory concentrations compared to PDC-1, the E219K (Ω-loop) and L293P (helix H10) variants significantly affected cefiderocol activity. Kinetic studies revealed that both mutations improve cefiderocol hydrolysis through different enzymatic mechanisms compared to PDC-1 (<i>K</i><sub>m</sub> = 85.29 µM, <i>k</i><sub>cat</sub> = 0.0036 s<sup>-1</sup>, and <i>k</i><sub>cat</sub>/<i>K</i><sub>m</sub> = 0.00004 µM<sup>-1</sup> s<sup>-1</sup>), leading to enhanced turnover in PDC E219K (<i>K</i><sub>m</sub> = 465.64 µM, <i>k</i><sub>cat</sub> = 0.45 s<sup>-1</sup>, and <i>k</i><sub>cat</sub>/<i>K</i><sub>m</sub> = 0.00096 µM<sup>-1</sup> s<sup>-1</sup>) and improved affinity in PDC L293P (<i>K</i><sub>m</sub> = 2.69 µM, <i>k</i><sub>cat</sub> = 0.0036 s<sup>-1</sup>, and <i>k</i><sub>cat</sub>/<i>K</i><sub>m</sub> = 0.00135 µM<sup>-1</sup> s<sup>-1</sup>). These mechanisms are also involved in resistance to ceftolozane and cefepime, identified as the preferred substrates for the E219K and L293P variants, respectively. Molecular dynamics (MD) simulation studies revealed that (i) rigidification of the Ω-loop in PDC E219K promotes optimal accommodation of the R<sup>1</sup> group of cefiderocol, enhancing nucleophilic attack by the catalytic serine; (ii) the less folded conformation of helix H10 in PDC L293P improves cefiderocol accommodation in the active site by establishing stronger hydrogen-bonding interactions with the R<sup>2</sup> group. Our findings demonstrate that the PDC β-lactamase may take advantage of the structural similarities between cefiderocol and other cephalosporins and accelerate hydrolysis by accommodating the E219K or L293P amino acid replacements.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0029225"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.00292-25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A wide variety of clinically observed amino acid alterations in the Pseudomonas aeruginosa chromosomal β-lactamase AmpC (Pseudomonas-derived cephalosporinase [PDC]) are associated with increased resistance to cefepime, ceftolozane/tazobactam, or ceftazidime/avibactam, but their impact on cefiderocol resistance is unclear. We took advantage of a previously engineered collection of wild-type (PAO1) and iron uptake-deficient (PAO ΔpiuC) P. aeruginosa isolates producing 19 distinct PDC variants with substitutions in key catalytic regions. While most variants had moderate effects on cefiderocol minimum inhibitory concentrations compared to PDC-1, the E219K (Ω-loop) and L293P (helix H10) variants significantly affected cefiderocol activity. Kinetic studies revealed that both mutations improve cefiderocol hydrolysis through different enzymatic mechanisms compared to PDC-1 (Km = 85.29 µM, kcat = 0.0036 s-1, and kcat/Km = 0.00004 µM-1 s-1), leading to enhanced turnover in PDC E219K (Km = 465.64 µM, kcat = 0.45 s-1, and kcat/Km = 0.00096 µM-1 s-1) and improved affinity in PDC L293P (Km = 2.69 µM, kcat = 0.0036 s-1, and kcat/Km = 0.00135 µM-1 s-1). These mechanisms are also involved in resistance to ceftolozane and cefepime, identified as the preferred substrates for the E219K and L293P variants, respectively. Molecular dynamics (MD) simulation studies revealed that (i) rigidification of the Ω-loop in PDC E219K promotes optimal accommodation of the R1 group of cefiderocol, enhancing nucleophilic attack by the catalytic serine; (ii) the less folded conformation of helix H10 in PDC L293P improves cefiderocol accommodation in the active site by establishing stronger hydrogen-bonding interactions with the R2 group. Our findings demonstrate that the PDC β-lactamase may take advantage of the structural similarities between cefiderocol and other cephalosporins and accelerate hydrolysis by accommodating the E219K or L293P amino acid replacements.

铜绿假单胞菌PDC β-内酰胺酶氨基酸序列变异的功能和结构分析揭示了铜绿假单胞菌对头孢地罗耐药的不同机制途径。
临床观察到的铜绿假单胞菌染色体β-内酰胺酶AmpC(假单胞菌衍生的头孢菌素酶[PDC])中多种氨基酸改变与对头孢吡肟、头孢唑烷/他唑巴坦或头孢他啶/阿维巴坦的耐药性增加有关,但它们对头孢地醇耐药的影响尚不清楚。我们利用先前的工程收集的野生型(PAO1)和铁摄取缺陷(PAO ΔpiuC)铜绿假单胞菌分离物产生19种不同的PDC变体,在关键催化区域有取代。虽然与PDC-1相比,大多数变异对头孢地罗的最低抑制浓度有中等影响,但E219K (Ω-loop)和L293P (helix H10)变异对头孢地罗的活性有显著影响。动力学研究表明,与PDC-1 (Km = 85.29µM, kcat = 0.0036 s-1, kcat/Km = 0.00004µM-1 s-1)相比,这两个突变通过不同的酶促机制促进了cefiderocol的水解,导致PDC E219K (Km = 465.64µM, kcat = 0.45 s-1, kcat/Km = 0.00096µM-1 s-1)的周转增加,PDC L293P (Km = 2.69µM, kcat = 0.0036 s-1, kcat/Km = 0.00135µM-1 s-1)的亲和力提高。这些机制也涉及对头孢唑烷和头孢吡肟的耐药性,这两种物质分别被确定为E219K和L293P变体的首选底物。分子动力学(MD)模拟研究表明:(1)PDC E219K中Ω-loop的固化促进了cefiderocol R1基团的最佳调节,增强了催化丝氨酸的亲核攻击;(ii) PDC L293P中螺旋H10较少折叠的构象通过与R2基团建立更强的氢键相互作用,提高了cefiderocol在活性位点的容纳能力。我们的研究结果表明,PDC β-内酰胺酶可能利用头孢菌素和其他头孢菌素之间的结构相似性,通过容纳E219K或L293P氨基酸替代来加速水解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.00
自引率
8.20%
发文量
762
审稿时长
3 months
期刊介绍: Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信