SAND: a comprehensive annotation of class D β-lactamases using structural alignment-based numbering.

IF 4.1 2区 医学 Q2 MICROBIOLOGY
Fedaa Attana, Soobin Kim, James Spencer, Bogdan I Iorga, Jean-Denis Docquier, Gian Maria Rossolini, Mariagrazia Perilli, Gianfranco Amicosante, Alejandro J Vila, Sergei B Vakulenko, Shahriar Mobashery, Patricia Bradford, Karen Bush, Sally R Partridge, Andrea M Hujer, Kristine M Hujer, Robert A Bonomo, Shozeb Haider
{"title":"SAND: a comprehensive annotation of class D β-lactamases using structural alignment-based numbering.","authors":"Fedaa Attana, Soobin Kim, James Spencer, Bogdan I Iorga, Jean-Denis Docquier, Gian Maria Rossolini, Mariagrazia Perilli, Gianfranco Amicosante, Alejandro J Vila, Sergei B Vakulenko, Shahriar Mobashery, Patricia Bradford, Karen Bush, Sally R Partridge, Andrea M Hujer, Kristine M Hujer, Robert A Bonomo, Shozeb Haider","doi":"10.1128/aac.00150-25","DOIUrl":null,"url":null,"abstract":"<p><p>Class D β-lactamases are a diverse group of enzymes that contribute to antibiotic resistance by inactivating β-lactam antibiotics. Examination of class D β-lactamases has evolved significantly over the years, with advancements in molecular biology and structural analysis providing deeper insights into their mechanisms of action and variation in specificity. However, one of the challenges in the field is the inconsistent residue numbering and secondary structure annotation across different studies, which complicates the comparison and interpretation of data. To address this, we propose SAND-a standardized naming system for both residues and secondary structure elements, based on a comprehensive structural alignment of all documented sequences and experimentally obtained crystal structures of class D β-lactamases. This unified framework will streamline cross-study comparisons and enhance data interpretation. Moreover, the standardized framework will enable AI-driven natural language processing (NLP) techniques to efficiently mine and compile relevant data from scientific literature, speeding up the discovery process and contributing to more rapid advancements in β-lactamase research.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0015025"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.00150-25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Class D β-lactamases are a diverse group of enzymes that contribute to antibiotic resistance by inactivating β-lactam antibiotics. Examination of class D β-lactamases has evolved significantly over the years, with advancements in molecular biology and structural analysis providing deeper insights into their mechanisms of action and variation in specificity. However, one of the challenges in the field is the inconsistent residue numbering and secondary structure annotation across different studies, which complicates the comparison and interpretation of data. To address this, we propose SAND-a standardized naming system for both residues and secondary structure elements, based on a comprehensive structural alignment of all documented sequences and experimentally obtained crystal structures of class D β-lactamases. This unified framework will streamline cross-study comparisons and enhance data interpretation. Moreover, the standardized framework will enable AI-driven natural language processing (NLP) techniques to efficiently mine and compile relevant data from scientific literature, speeding up the discovery process and contributing to more rapid advancements in β-lactamase research.

SAND:使用基于结构比对的编号对D类β-内酰胺酶进行综合注释。
D类β-内酰胺酶是一组不同的酶,通过使β-内酰胺类抗生素失活而产生抗生素耐药性。多年来,随着分子生物学和结构分析的进步,对D类β-内酰胺酶的检测已经发生了重大变化,为其作用机制和特异性变化提供了更深入的了解。然而,该领域面临的挑战之一是不同研究的残基编号和二级结构注释不一致,这使得数据的比较和解释变得复杂。为了解决这个问题,我们提出了一个基于所有记录序列和实验获得的D类β-内酰胺酶晶体结构的全面结构定位的残基和二级结构元素的标准化命名系统sand。这个统一的框架将简化交叉研究比较,并加强数据解释。此外,标准化框架将使人工智能驱动的自然语言处理(NLP)技术能够有效地从科学文献中挖掘和编译相关数据,加快发现过程,并有助于β-内酰胺酶研究的更快进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.00
自引率
8.20%
发文量
762
审稿时长
3 months
期刊介绍: Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信