Jayson M Antonio, Yue Liu, Panan Suntornsaratoon, Abigail Jones, Jayanth Ambat, Ajitha Bala, Joshua Joby Kanattu, Juan Flores, Sheila Bandyopadhyay, Ravij Upadhyay, Jagannatham Naidu Bhupana, Xiaoyang Su, Wei Vivian Li, Nan Gao, Ronaldo P Ferraris
{"title":"<i>Lacticaseibacillus rhamnosus GG</i>-driven remodeling of arginine metabolism mitigates gut barrier dysfunction.","authors":"Jayson M Antonio, Yue Liu, Panan Suntornsaratoon, Abigail Jones, Jayanth Ambat, Ajitha Bala, Joshua Joby Kanattu, Juan Flores, Sheila Bandyopadhyay, Ravij Upadhyay, Jagannatham Naidu Bhupana, Xiaoyang Su, Wei Vivian Li, Nan Gao, Ronaldo P Ferraris","doi":"10.1152/ajpgi.00366.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel diseases (IBDs) and gut barrier impairment are associated with changes in dietary tryptophan and arginine metabolism, but mechanisms of barrier perturbation and restoration are unclear. We show here that the widely consumed probiotic <i>Lacticaseibacillus rhamnosus</i> GG (LGG) enhances gut barrier functions in part through stimulating the intestinal arginine metabolic pathway, and this mechanism depends on the sufficiency of dietary tryptophan in the host. Specifically, LGG markedly upregulates argininosuccinate lyase (ASL), the enzyme that breaks down argininosuccinate into arginine. ASL expression is markedly reduced during experimental colitis with an accumulation of serum argininosuccinate. LGG colonization in mice reduces serum argininosuccinate, a metabolite that inversely correlates with tight junction gene expression, impairs barrier function, and exacerbates dextran sodium sulfate colitis. We show that LGG-derived indoles as well as arginine metabolites enhanced argininosuccinate lyase (ASL) and nitric oxide synthase (NOS2) expression, linking microbial metabolism to nitric oxide production and epithelial homeostasis. Patients with IBD have increased ASS1 and decreased ASL expression, suggesting a metabolic bottleneck driving ASA accumulation. We propose that signaling pathways underlying LGG and tryptophan-mediated ASL upregulation can be useful therapeutic targets to normalize arginine metabolism in select patients with IBD.<b>NEW & NOTEWORTHY</b> This study identifies a novel probiotic-driven mechanism linking dietary tryptophan and host arginine metabolism. <i>Lacticaseibacillus rhamnosus</i> GG, in synergy with tryptophan, enhances gut barrier integrity by upregulating argininosuccinate lyase (ASL), a critical enzyme in arginine biosynthesis. Furthermore, we uncover ASL downregulation and serum argininosuccinate elevation in experimental colitis in mice, suggesting a target to guide precision probiotics.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G162-G185"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00366.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammatory bowel diseases (IBDs) and gut barrier impairment are associated with changes in dietary tryptophan and arginine metabolism, but mechanisms of barrier perturbation and restoration are unclear. We show here that the widely consumed probiotic Lacticaseibacillus rhamnosus GG (LGG) enhances gut barrier functions in part through stimulating the intestinal arginine metabolic pathway, and this mechanism depends on the sufficiency of dietary tryptophan in the host. Specifically, LGG markedly upregulates argininosuccinate lyase (ASL), the enzyme that breaks down argininosuccinate into arginine. ASL expression is markedly reduced during experimental colitis with an accumulation of serum argininosuccinate. LGG colonization in mice reduces serum argininosuccinate, a metabolite that inversely correlates with tight junction gene expression, impairs barrier function, and exacerbates dextran sodium sulfate colitis. We show that LGG-derived indoles as well as arginine metabolites enhanced argininosuccinate lyase (ASL) and nitric oxide synthase (NOS2) expression, linking microbial metabolism to nitric oxide production and epithelial homeostasis. Patients with IBD have increased ASS1 and decreased ASL expression, suggesting a metabolic bottleneck driving ASA accumulation. We propose that signaling pathways underlying LGG and tryptophan-mediated ASL upregulation can be useful therapeutic targets to normalize arginine metabolism in select patients with IBD.NEW & NOTEWORTHY This study identifies a novel probiotic-driven mechanism linking dietary tryptophan and host arginine metabolism. Lacticaseibacillus rhamnosus GG, in synergy with tryptophan, enhances gut barrier integrity by upregulating argininosuccinate lyase (ASL), a critical enzyme in arginine biosynthesis. Furthermore, we uncover ASL downregulation and serum argininosuccinate elevation in experimental colitis in mice, suggesting a target to guide precision probiotics.
期刊介绍:
The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.