Jiali Huang, Qingchun Liang, Yuanzhi Ye, Zirong Lan, An Chen, Jianyun Yan, Lihe Lu
{"title":"GDF11 Alleviates Vascular Calcification in VitD3-Overloaded Mice Through Inhibition of Inflammatory NF-κB Signal","authors":"Jiali Huang, Qingchun Liang, Yuanzhi Ye, Zirong Lan, An Chen, Jianyun Yan, Lihe Lu","doi":"10.1096/fj.202500029R","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Vascular calcification, an age-associated disorder, is a highly regulated biological process similar to bone formation. Growth differentiation factor 11 (GDF11), a secreted member of the transforming growth factor beta (TGF-β) superfamily, has been shown to act as an anti-aging factor in the brain, heart, skin, and skeletal muscle. Nevertheless, whether GDF11 affects vascular calcification and the underlying mechanisms remain unclear. In the present study, beta-glycerophosphate and calcium chloride-induced calcification of vascular smooth muscle cells (VSMCs) and a VitD<sub>3</sub>-overloaded mouse model were used to investigate the role of GDF11 in vascular calcification. Our results revealed that the knockdown of GDF11 by siRNA promoted the calcification of rat VSMCs, whereas GDF11 treatment significantly reduced the calcification of human and rat VSMCs in vitro, as detected by alizarin red staining and calcium content assay. Similarly, GDF11 treatment reduced the expression of bone-related molecules including Runt-related transcription factor 2 (Runx2) and bone morphogenetic protein-2 (BMP2). Furthermore, ex vivo and in vivo studies confirmed the inhibitory effect of GDF11 on vascular calcification. Mechanistically, GDF11 treatment reduced the levels of NF-κB signaling molecules including NLRP3, phosphorylated p65, IL-6, and IL-1β in VSMCs. Additionally, GDF11 siRNA-induced VSMC calcification was repressed by NF-κB inhibitor PDTC treatment. Taken together, these findings suggest that GDF11 alleviates vascular calcification through inhibiting the NF-κB signal. Modulation of GDF11 may represent a therapeutic strategy for vascular calcification.</p>\n </div>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202500029R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular calcification, an age-associated disorder, is a highly regulated biological process similar to bone formation. Growth differentiation factor 11 (GDF11), a secreted member of the transforming growth factor beta (TGF-β) superfamily, has been shown to act as an anti-aging factor in the brain, heart, skin, and skeletal muscle. Nevertheless, whether GDF11 affects vascular calcification and the underlying mechanisms remain unclear. In the present study, beta-glycerophosphate and calcium chloride-induced calcification of vascular smooth muscle cells (VSMCs) and a VitD3-overloaded mouse model were used to investigate the role of GDF11 in vascular calcification. Our results revealed that the knockdown of GDF11 by siRNA promoted the calcification of rat VSMCs, whereas GDF11 treatment significantly reduced the calcification of human and rat VSMCs in vitro, as detected by alizarin red staining and calcium content assay. Similarly, GDF11 treatment reduced the expression of bone-related molecules including Runt-related transcription factor 2 (Runx2) and bone morphogenetic protein-2 (BMP2). Furthermore, ex vivo and in vivo studies confirmed the inhibitory effect of GDF11 on vascular calcification. Mechanistically, GDF11 treatment reduced the levels of NF-κB signaling molecules including NLRP3, phosphorylated p65, IL-6, and IL-1β in VSMCs. Additionally, GDF11 siRNA-induced VSMC calcification was repressed by NF-κB inhibitor PDTC treatment. Taken together, these findings suggest that GDF11 alleviates vascular calcification through inhibiting the NF-κB signal. Modulation of GDF11 may represent a therapeutic strategy for vascular calcification.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.