A Tiny Machine Learning for Real-Time Anomaly Detection of Self-Media Public Opinion in Edge-Cloud-Cooperation Campus Networks

IF 0.9 Q4 TELECOMMUNICATIONS
Shiqi Li
{"title":"A Tiny Machine Learning for Real-Time Anomaly Detection of Self-Media Public Opinion in Edge-Cloud-Cooperation Campus Networks","authors":"Shiqi Li","doi":"10.1002/itl2.70038","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Real-time anomaly detection in self-media public opinion requires lightweight solutions to address the latency and multimodal complexity challenges of campus network ecosystems. This article proposes a tiny machine learning framework for edge-cloud-cooperation campus networks, enabling efficient detection of opinion anomalies through distributed computation. The architecture combines edge-native micro-model compression with cloud-assisted federated verification, achieving three key innovations: (1) On-device micro-graph neural networks (GNNs) deployed at edge nodes for low-latency pattern recognition in terahertz multimedia streams; (2) a dual-phase anomaly engine leveraging contrastive semantic alignment and adaptive influence analysis to capture cross-modal inconsistencies; (3) dynamic knowledge distillation that reduces model footprints to 8 MB while preserving 91% precision and 87% recall on a 120,000 post dataset from 15 universities. Experimental results demonstrate 120 ms average inference latency with 68% lower computation overhead than centralized baselines, accelerating emergency response by 3.25× through edge-cloud task partitioning. The framework maintains 74% energy efficiency in continuous operation, proving the viability of tiny machine learning paradigms for intelligent campus governance without relying on next-generation communication standards.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time anomaly detection in self-media public opinion requires lightweight solutions to address the latency and multimodal complexity challenges of campus network ecosystems. This article proposes a tiny machine learning framework for edge-cloud-cooperation campus networks, enabling efficient detection of opinion anomalies through distributed computation. The architecture combines edge-native micro-model compression with cloud-assisted federated verification, achieving three key innovations: (1) On-device micro-graph neural networks (GNNs) deployed at edge nodes for low-latency pattern recognition in terahertz multimedia streams; (2) a dual-phase anomaly engine leveraging contrastive semantic alignment and adaptive influence analysis to capture cross-modal inconsistencies; (3) dynamic knowledge distillation that reduces model footprints to 8 MB while preserving 91% precision and 87% recall on a 120,000 post dataset from 15 universities. Experimental results demonstrate 120 ms average inference latency with 68% lower computation overhead than centralized baselines, accelerating emergency response by 3.25× through edge-cloud task partitioning. The framework maintains 74% energy efficiency in continuous operation, proving the viability of tiny machine learning paradigms for intelligent campus governance without relying on next-generation communication standards.

基于微型机器学习的边缘云合作校园网自媒体舆情实时异常检测
自媒体舆情的实时异常检测需要轻量级的解决方案来解决校园网络生态系统的延迟和多模态复杂性挑战。本文提出了一种用于边缘云合作校园网的小型机器学习框架,通过分布式计算实现对意见异常的高效检测。该架构将边缘本地微模型压缩与云辅助联邦验证相结合,实现了三个关键创新:(1)部署在边缘节点的设备上微图神经网络(gnn),用于太赫兹多媒体流中的低延迟模式识别;(2)利用对比语义对齐和自适应影响分析来捕获跨模态不一致性的双阶段异常引擎;(3)动态知识蒸馏,将模型占用空间减少到8 MB,同时在来自15所大学的120,000个帖子数据集上保持91%的精度和87%的召回率。实验结果表明,与集中式基线相比,平均推理延迟为120 ms,计算开销降低68%,通过边缘云任务分区将应急响应速度提高了3.25倍。该框架在连续运行中保持74%的能源效率,证明了微型机器学习范式在不依赖下一代通信标准的情况下实现智能校园治理的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信