Monolithic Integration of Sub-50 nm III–V Nano-Heterostructures on Si (001) for Telecom Photonics

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alisha Nanwani, Paweł Wyborski, Michael S. Seifner, Shima Kadkhodazadeh, Grzegorz Sęk, Kresten Yvind, Paweł Holewa, Elizaveta Semenova
{"title":"Monolithic Integration of Sub-50 nm III–V Nano-Heterostructures on Si (001) for Telecom Photonics","authors":"Alisha Nanwani,&nbsp;Paweł Wyborski,&nbsp;Michael S. Seifner,&nbsp;Shima Kadkhodazadeh,&nbsp;Grzegorz Sęk,&nbsp;Kresten Yvind,&nbsp;Paweł Holewa,&nbsp;Elizaveta Semenova","doi":"10.1002/adom.202403419","DOIUrl":null,"url":null,"abstract":"<p>The demand for advanced photonics technology is increasing rapidly, fueled by the necessity for high-performance, cost-effective optical information processing systems extending into the quantum domain. Silicon, benefiting from its mature fabrication processes, stands as an ideal platform. However, its inherent indirect bandgap leads to inefficient light emission. The integration of III-V materials is essential to overcome this drawback. These materials are recognized for their efficient light emission and superior bandgap engineering, making them indispensable in photonics and beyond. Here, we present the monolithic integration of small-volume III-V nano-heterostructures with silicon via selective area epitaxy in pyramidal openings etched in (100)-oriented silicon substrate. Precise positioning of the nano-heterostructures is achieved using electron beam lithography. Atomic resolution imaging and chemical analysis confirm the epitaxial nature of InP growth, revealing well-defined heterointerfaces. Each structure incorporates an InAsP quantum dot-like active medium, and the correlation of the growth parameters with the nanoscale structure is analyzed using advanced electron microscopy. Eight-band k·p calculations demonstrate energy level quantization in three spatial dimensions. Optical characterization shows that heterostructure emission can be engineered to cover the entire telecom wavelength range. These InAsP/InP nano-heterostructures can serve as gain medium for silicon-based hybrid nano-lasers, nano-LEDs, and quantum light sources in telecom wavelength range.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 15","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202403419","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403419","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for advanced photonics technology is increasing rapidly, fueled by the necessity for high-performance, cost-effective optical information processing systems extending into the quantum domain. Silicon, benefiting from its mature fabrication processes, stands as an ideal platform. However, its inherent indirect bandgap leads to inefficient light emission. The integration of III-V materials is essential to overcome this drawback. These materials are recognized for their efficient light emission and superior bandgap engineering, making them indispensable in photonics and beyond. Here, we present the monolithic integration of small-volume III-V nano-heterostructures with silicon via selective area epitaxy in pyramidal openings etched in (100)-oriented silicon substrate. Precise positioning of the nano-heterostructures is achieved using electron beam lithography. Atomic resolution imaging and chemical analysis confirm the epitaxial nature of InP growth, revealing well-defined heterointerfaces. Each structure incorporates an InAsP quantum dot-like active medium, and the correlation of the growth parameters with the nanoscale structure is analyzed using advanced electron microscopy. Eight-band k·p calculations demonstrate energy level quantization in three spatial dimensions. Optical characterization shows that heterostructure emission can be engineered to cover the entire telecom wavelength range. These InAsP/InP nano-heterostructures can serve as gain medium for silicon-based hybrid nano-lasers, nano-LEDs, and quantum light sources in telecom wavelength range.

Abstract Image

电信光子学用Si(001)上亚50 nm III-V纳米异质结构的单片集成
高性能、低成本的光学信息处理系统扩展到量子领域的必要性推动了对先进光子学技术的需求迅速增长。得益于其成熟的制造工艺,硅是一个理想的平台。然而,其固有的间接带隙导致其发光效率低下。III-V材料的集成对于克服这一缺点至关重要。这些材料以其高效的光发射和卓越的带隙工程而闻名,使其在光子学和其他领域不可或缺。在这里,我们展示了小体积III-V纳米异质结构与硅的单片集成,通过选择性区域外延在(100)取向硅衬底上蚀刻的金字塔开口中。利用电子束光刻技术实现了纳米异质结构的精确定位。原子分辨率成像和化学分析证实了InP生长的外延性质,揭示了明确的异质界面。每个结构都包含一个类似InAsP量子点的活性介质,并使用先进的电子显微镜分析了生长参数与纳米结构的相关性。八波段k·p计算证明了三个空间维度的能级量子化。光学特性表明,异质结构发射可以覆盖整个电信波长范围。这些InAsP/InP纳米异质结构可以作为电信波长范围内硅基混合纳米激光器、纳米led和量子光源的增益介质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信