{"title":"PurifyFL: Non-Interactive Privacy-Preserving Federated Learning Against Poisoning Attacks Based on Single Server","authors":"Yanli Ren;Zhe Yang;Guorui Feng;Xinpeng Zhang","doi":"10.1109/TETCI.2025.3540420","DOIUrl":null,"url":null,"abstract":"Privacy-preserving federated learning (PPFL) allows multiple users to collaboratively train models on local devices without the the risk of privacy leakage. However, PPFL is prone to be disrupted by poisoning attacks for the server being forbbiden from accessing users' updates. The existing protocols focusing on poisoning attacks in PPFL generally use two servers to interactively execute protocols to defend against poisoning attacks, while the other ones using a single server require multiple rounds of server-user interactions, both of which incur significant communication overheads. We propose PurifyFL, a privacy-preserving poisoning attacks defense strategy. PurifyFL only relies on a single server while most of the previous works depend on two non-colluding servers, which are impractical in reality. Moreover, We also achieve non-interactivity between the users and the server. Experiments show that PurifyFL can effectively resist typical poisoning attacks with lower computational and communication overheads compared to existing works.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 3","pages":"2232-2243"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10930645/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Privacy-preserving federated learning (PPFL) allows multiple users to collaboratively train models on local devices without the the risk of privacy leakage. However, PPFL is prone to be disrupted by poisoning attacks for the server being forbbiden from accessing users' updates. The existing protocols focusing on poisoning attacks in PPFL generally use two servers to interactively execute protocols to defend against poisoning attacks, while the other ones using a single server require multiple rounds of server-user interactions, both of which incur significant communication overheads. We propose PurifyFL, a privacy-preserving poisoning attacks defense strategy. PurifyFL only relies on a single server while most of the previous works depend on two non-colluding servers, which are impractical in reality. Moreover, We also achieve non-interactivity between the users and the server. Experiments show that PurifyFL can effectively resist typical poisoning attacks with lower computational and communication overheads compared to existing works.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.