Modeling of Spiking Neural Network With Optimal Hidden Layer via Spatiotemporal Orthogonal Encoding for Patterns Recognition

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zenan Huang;Yinghui Chang;Weikang Wu;Chenhui Zhao;Hongyan Luo;Shan He;Donghui Guo
{"title":"Modeling of Spiking Neural Network With Optimal Hidden Layer via Spatiotemporal Orthogonal Encoding for Patterns Recognition","authors":"Zenan Huang;Yinghui Chang;Weikang Wu;Chenhui Zhao;Hongyan Luo;Shan He;Donghui Guo","doi":"10.1109/TETCI.2025.3537944","DOIUrl":null,"url":null,"abstract":"The Spiking Neural Network (SNN) diverges from conventional rate-based network models by showcasing remarkable biological fidelity and advanced spatiotemporal computation capabilities, precisely converting input spike sequences into firing activities. This paper introduces the Spiking Optimal Neural Network (SONN), a model that integrates spiking neurons with spatiotemporal orthogonal polynomials to enhance pattern recognition capabilities. SONN innovatively integrates orthogonal polynomials and complex domain transformations seamlessly into neural dynamics, aiming to elucidate neural encoding and enhance cognitive computing capabilities. The dynamic integration of SONN enables continuous optimization of encoding methodologies and layer structures, showcasing its adaptability and refinement over time. Fundamentally, the model provides an adjustable method based on orthogonal polynomials and the corresponding complex-valued neuron model, striking a balance between network scalability and output accuracy. To evaluate its performance, SONN underwent experiments using datasets from the UCI Machine Learning Repository, the Fashion-MNIST dataset, the CIFAR-10 dataset and neuromorphic DVS128 Gesture dataset. The results show that smaller-sized SONN architectures achieve comparable accuracy in benchmark datasets compared to other SNNs.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 3","pages":"2194-2207"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908630/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Spiking Neural Network (SNN) diverges from conventional rate-based network models by showcasing remarkable biological fidelity and advanced spatiotemporal computation capabilities, precisely converting input spike sequences into firing activities. This paper introduces the Spiking Optimal Neural Network (SONN), a model that integrates spiking neurons with spatiotemporal orthogonal polynomials to enhance pattern recognition capabilities. SONN innovatively integrates orthogonal polynomials and complex domain transformations seamlessly into neural dynamics, aiming to elucidate neural encoding and enhance cognitive computing capabilities. The dynamic integration of SONN enables continuous optimization of encoding methodologies and layer structures, showcasing its adaptability and refinement over time. Fundamentally, the model provides an adjustable method based on orthogonal polynomials and the corresponding complex-valued neuron model, striking a balance between network scalability and output accuracy. To evaluate its performance, SONN underwent experiments using datasets from the UCI Machine Learning Repository, the Fashion-MNIST dataset, the CIFAR-10 dataset and neuromorphic DVS128 Gesture dataset. The results show that smaller-sized SONN architectures achieve comparable accuracy in benchmark datasets compared to other SNNs.
基于时空正交编码的最优隐层脉冲神经网络模式识别建模
脉冲神经网络(SNN)与传统的基于速率的网络模型不同,它展示了卓越的生物保真度和先进的时空计算能力,可以精确地将输入脉冲序列转换为放电活动。本文介绍了一种将峰值神经元与时空正交多项式相结合以增强模式识别能力的模型——峰值最优神经网络(SONN)。SONN创新地将正交多项式和复域变换无缝集成到神经动力学中,旨在阐明神经编码,增强认知计算能力。SONN的动态集成使编码方法和层结构不断优化,显示出其随时间的适应性和精细化。从根本上说,该模型提供了一种基于正交多项式和相应的复值神经元模型的可调方法,在网络可扩展性和输出精度之间取得了平衡。为了评估其性能,SONN使用来自UCI机器学习库、Fashion-MNIST数据集、CIFAR-10数据集和神经形态DVS128手势数据集的数据集进行了实验。结果表明,与其他snn相比,较小尺寸的SONN架构在基准数据集上取得了相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信