Ke Gu;Yuchen Liu;Hongyan Liu;Bo Liu;Lai-Kuan Wong;Weisi Lin;Junfei Qiao
{"title":"Model-Data Jointly Driven Method for Airborne Particulate Matter Monitoring","authors":"Ke Gu;Yuchen Liu;Hongyan Liu;Bo Liu;Lai-Kuan Wong;Weisi Lin;Junfei Qiao","doi":"10.1109/TETCI.2024.3502433","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel model-data jointly driven (MDJD) method from a single picture for airborne particulate matter (APM) monitoring, towards assisting the decision-making for government and reducing the health risks for individuals. The MDJD method is mainly composed of three steps. First, we create a vector of .distance. as the model driven natural scene statistic (NSS) features through comparing the sparsity features that are extracted from one picture in five transform domains with their corresponding benchmark features that are derived by using a huge number of pictures with the extremely low APM concentrations in advance. Second, we produce a vector of .distance. as the data-driven NSS features through comparing the contrast-sensitive features that are chosen from hundreds of deep features with their associated benchmark features that are derived based on the same feature generation method as used in model-driven NSS features. Lastly, we fuse the aforesaid model- and data-driven NSS features by introducing a nonlinear regressor to estimate the APM concentration. Extensive experiments conducted on two large-size APM picture datasets validate the superiority of our proposed MDJD method over the state-of-the-art model-driven methods and data-driven methods by a sizable gain of 7.4% in terms of peak signal to noise ratio. Via a series of ablation studies, we can observe that fusing model- and data-driven NSS features is beneficial to improving the model's generalization and fitting abilities and leads to the gains of over 15.1% compared with using either type of features in isolation.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 3","pages":"2557-2571"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816098/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we propose a novel model-data jointly driven (MDJD) method from a single picture for airborne particulate matter (APM) monitoring, towards assisting the decision-making for government and reducing the health risks for individuals. The MDJD method is mainly composed of three steps. First, we create a vector of .distance. as the model driven natural scene statistic (NSS) features through comparing the sparsity features that are extracted from one picture in five transform domains with their corresponding benchmark features that are derived by using a huge number of pictures with the extremely low APM concentrations in advance. Second, we produce a vector of .distance. as the data-driven NSS features through comparing the contrast-sensitive features that are chosen from hundreds of deep features with their associated benchmark features that are derived based on the same feature generation method as used in model-driven NSS features. Lastly, we fuse the aforesaid model- and data-driven NSS features by introducing a nonlinear regressor to estimate the APM concentration. Extensive experiments conducted on two large-size APM picture datasets validate the superiority of our proposed MDJD method over the state-of-the-art model-driven methods and data-driven methods by a sizable gain of 7.4% in terms of peak signal to noise ratio. Via a series of ablation studies, we can observe that fusing model- and data-driven NSS features is beneficial to improving the model's generalization and fitting abilities and leads to the gains of over 15.1% compared with using either type of features in isolation.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.