{"title":"Cross-Scale Fuzzy Holistic Attention Network for Diabetic Retinopathy Grading From Fundus Images","authors":"Zhijie Lin;Zhaoshui He;Xu Wang;Wenqing Su;Ji Tan;Yamei Deng;Shengli Xie","doi":"10.1109/TETCI.2025.3543361","DOIUrl":null,"url":null,"abstract":"Diabetic Retinopathy (DR) is one of the leading causes of visual impairment and blindness in diabetic patients worldwide. Accurate Computer-Aided Diagnosis (CAD) systems can aid in the early diagnosis and treatment of DR patients to reduce the risk of vision loss, but it remains challenging due to the following reasons: 1) the relatively low contrast and ambiguous boundaries between pathological lesions and normal retinal regions, and 2) the considerable diversity in lesion size and appearance. In this paper, a Cross-Scale Fuzzy Holistic Attention Network (CSFHANet) is proposed for DR grading using fundus images, and it consists of two main components: Fuzzy-Enhanced Holistic Attention (FEHA) and Fuzzy Learning-based Cross-Scale Fusion (FLCSF). FEHA is developed to adaptively recalibrate the importance of feature elements by assigning fuzzy weights across both channel and spatial domains, which can enhance the model's ability to learn the features of lesion regions while reducing the interference from irrelevant information in normal retinal regions. Then, the FLCSF module is designed to eliminate the uncertainty in fused multi-scale features derived from different branches by utilizing fuzzy membership functions, producing a more comprehensive and refined feature representation from complex DR lesions. Extensive experiments on the Messidor-2 and DDR datasets demonstrate that the proposed CSFHANet exhibits superior performance compared to state-of-the-art methods.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 3","pages":"2164-2178"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10915639/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic Retinopathy (DR) is one of the leading causes of visual impairment and blindness in diabetic patients worldwide. Accurate Computer-Aided Diagnosis (CAD) systems can aid in the early diagnosis and treatment of DR patients to reduce the risk of vision loss, but it remains challenging due to the following reasons: 1) the relatively low contrast and ambiguous boundaries between pathological lesions and normal retinal regions, and 2) the considerable diversity in lesion size and appearance. In this paper, a Cross-Scale Fuzzy Holistic Attention Network (CSFHANet) is proposed for DR grading using fundus images, and it consists of two main components: Fuzzy-Enhanced Holistic Attention (FEHA) and Fuzzy Learning-based Cross-Scale Fusion (FLCSF). FEHA is developed to adaptively recalibrate the importance of feature elements by assigning fuzzy weights across both channel and spatial domains, which can enhance the model's ability to learn the features of lesion regions while reducing the interference from irrelevant information in normal retinal regions. Then, the FLCSF module is designed to eliminate the uncertainty in fused multi-scale features derived from different branches by utilizing fuzzy membership functions, producing a more comprehensive and refined feature representation from complex DR lesions. Extensive experiments on the Messidor-2 and DDR datasets demonstrate that the proposed CSFHANet exhibits superior performance compared to state-of-the-art methods.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.