Feng Xiao;Ruyu Liu;Xu Cheng;Haoyu Zhang;Jianhua Zhang;Yaochu Jin
{"title":"Dual-Branch Semantic Enhancement Network Joint With Iterative Self-Matching Training Strategy for Semi-Supervised Semantic Segmentation","authors":"Feng Xiao;Ruyu Liu;Xu Cheng;Haoyu Zhang;Jianhua Zhang;Yaochu Jin","doi":"10.1109/TETCI.2025.3543272","DOIUrl":null,"url":null,"abstract":"With the rapid development of deep learning, supervised training methods have become increasingly sophisticated. There has been a growing trend towards semi-supervised and weakly supervised learning methods. This shift in focus is partly due to the challenges in obtaining large amounts of labeled data. The key to semi-supervised semantic segmentation is how to efficiently use a large amount of unlabeled data. A common practice is to use labeled data to generate pseudo labels for unlabeled data. However, the pseudo labels generated by these operations are of low quality, which severely interferes with the subsequent segmentation task. In this work, we propose to use the iterative self-matching strategy to enhance the self-training strategy, through which the quality of pseudo labels can be significantly improved. In practice, we split unlabeled data into two confidence types, i.e., reliable images and unreliable images, by an adaptive threshold. Using our iterative self-matching strategy, all reliable images are automatically added to the training dataset in each training iteration. At the same time, our algorithm employs an adaptive selection mechanism to filter out the highest-scoring pseudo labels of unreliable images, which are then used to further expand the training data. This iterative process enhances the reliability of the pseudo labels generated by the model. Based on this idea, we propose a novel semi-supervised semantic segmentation framework called SISS-Net. We conducted experiments on three public benchmark datasets: Pascal VOC 2012, COCO, and Cityscapes. The experimental results show that our method outperforms the supervised training method by 9.3%. In addition, we performed various joint ablation experiments to validate the effectiveness of our method.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 3","pages":"2308-2320"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10918799/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of deep learning, supervised training methods have become increasingly sophisticated. There has been a growing trend towards semi-supervised and weakly supervised learning methods. This shift in focus is partly due to the challenges in obtaining large amounts of labeled data. The key to semi-supervised semantic segmentation is how to efficiently use a large amount of unlabeled data. A common practice is to use labeled data to generate pseudo labels for unlabeled data. However, the pseudo labels generated by these operations are of low quality, which severely interferes with the subsequent segmentation task. In this work, we propose to use the iterative self-matching strategy to enhance the self-training strategy, through which the quality of pseudo labels can be significantly improved. In practice, we split unlabeled data into two confidence types, i.e., reliable images and unreliable images, by an adaptive threshold. Using our iterative self-matching strategy, all reliable images are automatically added to the training dataset in each training iteration. At the same time, our algorithm employs an adaptive selection mechanism to filter out the highest-scoring pseudo labels of unreliable images, which are then used to further expand the training data. This iterative process enhances the reliability of the pseudo labels generated by the model. Based on this idea, we propose a novel semi-supervised semantic segmentation framework called SISS-Net. We conducted experiments on three public benchmark datasets: Pascal VOC 2012, COCO, and Cityscapes. The experimental results show that our method outperforms the supervised training method by 9.3%. In addition, we performed various joint ablation experiments to validate the effectiveness of our method.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.