Weight representations of affine Kac-Moody algebras and small quantum groups

IF 1.5 1区 数学 Q1 MATHEMATICS
Tomoyuki Arakawa , Thomas Creutzig , Kazuya Kawasetsu
{"title":"Weight representations of affine Kac-Moody algebras and small quantum groups","authors":"Tomoyuki Arakawa ,&nbsp;Thomas Creutzig ,&nbsp;Kazuya Kawasetsu","doi":"10.1016/j.aim.2025.110365","DOIUrl":null,"url":null,"abstract":"<div><div>We study the weight modules over affine Kac-Moody algebras from the view point of vertex algebras, and determine the abelian category of weight modules for the simple affine vertex algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> at any non-integral admissible level <em>k</em>. In particular, we show that the principal block of the category of weight modules over admissible <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is equivalent to that of the corresponding (unrolled) small quantum group.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"477 ","pages":"Article 110365"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002634","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the weight modules over affine Kac-Moody algebras from the view point of vertex algebras, and determine the abelian category of weight modules for the simple affine vertex algebra Lk(sl2) at any non-integral admissible level k. In particular, we show that the principal block of the category of weight modules over admissible Lk(sl2) is equivalent to that of the corresponding (unrolled) small quantum group.
仿射Kac-Moody代数和小量子群的权表示
从顶点代数的角度研究了仿射Kac-Moody代数上的权模,并确定了简单仿射顶点代数Lk(sl2)在任意非积分可容许水平k上的权模的阿贝尔范畴,特别是证明了可容许Lk(sl2)上权模范畴的主块等价于相应的(展开的)小量子群的主块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信