{"title":"An interpretable deep learning framework for predicting hospital readmissions from electronic health records","authors":"Fabio Azzalini , Tommaso Dolci , Marco Vagaggini","doi":"10.1016/j.smhl.2025.100581","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing availability of patient data, modern medicine is shifting towards prospective healthcare. Electronic health records offer a variety of information useful for clinical patient characterization and the development of predictive models, given that similar medical histories often lead to analogous health progressions. One application is the prediction of unplanned hospital readmissions, an essential task for reducing healthcare costs and improving patient outcomes. While predictive models demonstrate strong performances especially with deep learning approaches, they are often criticized for their lack of interpretability, a critical requirement in the medical domain where incorrect predictions may have severe consequences for patient safety. In this paper, we propose a novel and interpretable deep learning framework for predicting unplanned hospital readmissions, supported by NLP findings on word embeddings and by ConvLSTM neural networks for better handling temporal data. We validate the framework on two predictive tasks for hospital readmission within 30 and 180 days, using real-world data. Additionally, we introduce and evaluate a model-dependent technique designed to enhance result interpretability for medical professionals. Our solution outperforms traditional machine learning models in prediction accuracy while simultaneously providing more interpretable results.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"37 ","pages":"Article 100581"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235264832500042X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing availability of patient data, modern medicine is shifting towards prospective healthcare. Electronic health records offer a variety of information useful for clinical patient characterization and the development of predictive models, given that similar medical histories often lead to analogous health progressions. One application is the prediction of unplanned hospital readmissions, an essential task for reducing healthcare costs and improving patient outcomes. While predictive models demonstrate strong performances especially with deep learning approaches, they are often criticized for their lack of interpretability, a critical requirement in the medical domain where incorrect predictions may have severe consequences for patient safety. In this paper, we propose a novel and interpretable deep learning framework for predicting unplanned hospital readmissions, supported by NLP findings on word embeddings and by ConvLSTM neural networks for better handling temporal data. We validate the framework on two predictive tasks for hospital readmission within 30 and 180 days, using real-world data. Additionally, we introduce and evaluate a model-dependent technique designed to enhance result interpretability for medical professionals. Our solution outperforms traditional machine learning models in prediction accuracy while simultaneously providing more interpretable results.