Domain-aware Gaussian process state-space models

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Anurodh Mishra, Raj Thilak Rajan
{"title":"Domain-aware Gaussian process state-space models","authors":"Anurodh Mishra,&nbsp;Raj Thilak Rajan","doi":"10.1016/j.sigpro.2025.110003","DOIUrl":null,"url":null,"abstract":"<div><div>Gaussian process state-space models are a widely used modeling paradigm for learning and estimation in dynamical systems. Reduced-rank Gaussian process state-space models combine spectral characterization of dynamical systems with Hilbert space methods to enable learning, which scale linearly with the length of the time series. However, the current state of the art algorithms struggle to deal efficiently with the dimensionality of the state-space itself. In this work, we propose a novel algorithm, referred to as Domain-Aware reduced-rank Gaussian Process State-Space Model (DA-GPSSM), which exploits the relationship between state dimensions to model only necessary dynamics resulting in reduced computational cost, by potentially orders of magnitude in comparison to the state-of-the-art. The proposed approach grants modeling flexibility while maintaining comparable performance and thus increasing the applicability of these models. We present implications of the proposed approach and discuss applications where DA-GPSSM can be beneficial. Finally, we conduct simulations to demonstrate the performance and reduced computational cost of our proposed method, compared to the state-of-the-art learning method, and propose future research directions.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"238 ","pages":"Article 110003"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425001173","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Gaussian process state-space models are a widely used modeling paradigm for learning and estimation in dynamical systems. Reduced-rank Gaussian process state-space models combine spectral characterization of dynamical systems with Hilbert space methods to enable learning, which scale linearly with the length of the time series. However, the current state of the art algorithms struggle to deal efficiently with the dimensionality of the state-space itself. In this work, we propose a novel algorithm, referred to as Domain-Aware reduced-rank Gaussian Process State-Space Model (DA-GPSSM), which exploits the relationship between state dimensions to model only necessary dynamics resulting in reduced computational cost, by potentially orders of magnitude in comparison to the state-of-the-art. The proposed approach grants modeling flexibility while maintaining comparable performance and thus increasing the applicability of these models. We present implications of the proposed approach and discuss applications where DA-GPSSM can be beneficial. Finally, we conduct simulations to demonstrate the performance and reduced computational cost of our proposed method, compared to the state-of-the-art learning method, and propose future research directions.
域感知高斯过程状态空间模型
高斯过程状态空间模型是一种广泛应用于动态系统学习和估计的建模范式。降秩高斯过程状态空间模型将动力系统的频谱特征与希尔伯特空间方法结合起来,使学习成为可能,其与时间序列的长度成线性比例。然而,目前最先进的算法很难有效地处理状态空间本身的维数。在这项工作中,我们提出了一种新的算法,称为域感知降阶高斯过程状态空间模型(DA-GPSSM),它利用状态维度之间的关系来模拟必要的动态,从而降低了计算成本,与最先进的算法相比,可能降低了几个数量级。所提出的方法赋予建模灵活性,同时保持可比较的性能,从而增加这些模型的适用性。我们提出了所提出的方法的含义,并讨论了DA-GPSSM可能有益的应用。最后,我们进行了仿真,与目前最先进的学习方法相比,我们所提出的方法的性能和降低的计算成本,并提出了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信