Xuewei Wang, Chen Chen, Yang Tian* and Qi-Wei Zhang*,
{"title":"Dual-Channel Phosphorescence Ratiometry and Phosphorescence Lifetime Imaging of Mitochondria-Specific Methionine Sulfoxide Reductase Activity","authors":"Xuewei Wang, Chen Chen, Yang Tian* and Qi-Wei Zhang*, ","doi":"10.1021/jacs.5c0323510.1021/jacs.5c03235","DOIUrl":null,"url":null,"abstract":"<p >Methionine sulfoxide reductases (Msrs) are essential for preserving redox homeostasis in the nervous system, with dysregulation implicated in Alzheimer’s disease (AD). Conventional fluorescence-based assays for Msrs activity sensing are hampered by background interference, limited sensitivity, and inadequate quantification. This work introduces a novel supramolecular probe exhibiting redox-responsive dual-channel room-temperature phosphorescence (RTP) in aqueous media on a microsecond time scale. Upon reduction by Msrs, the probe transitions from its oxidized to reduced state, manifested by a red-shifted phosphorescence emission and extended lifetime in the microsecond range, which enables precise quantification of mitochondria-targeted Msrs activity via phosphorescence ratiometry and phosphorescence lifetime imaging (PLIM). The probe’s utility is demonstrated in visualizing neuronal Msrs activity and distribution within the mouse brain, which reveals a marked downregulation of Msrs activity in an AD model, highlighting the probe’s potential in elucidating redox-related pathological mechanisms underlying neurodegenerative disorders.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 21","pages":"17994–18002 17994–18002"},"PeriodicalIF":15.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c03235","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Methionine sulfoxide reductases (Msrs) are essential for preserving redox homeostasis in the nervous system, with dysregulation implicated in Alzheimer’s disease (AD). Conventional fluorescence-based assays for Msrs activity sensing are hampered by background interference, limited sensitivity, and inadequate quantification. This work introduces a novel supramolecular probe exhibiting redox-responsive dual-channel room-temperature phosphorescence (RTP) in aqueous media on a microsecond time scale. Upon reduction by Msrs, the probe transitions from its oxidized to reduced state, manifested by a red-shifted phosphorescence emission and extended lifetime in the microsecond range, which enables precise quantification of mitochondria-targeted Msrs activity via phosphorescence ratiometry and phosphorescence lifetime imaging (PLIM). The probe’s utility is demonstrated in visualizing neuronal Msrs activity and distribution within the mouse brain, which reveals a marked downregulation of Msrs activity in an AD model, highlighting the probe’s potential in elucidating redox-related pathological mechanisms underlying neurodegenerative disorders.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.