Daniela Rodrigues Silva, Lucas de Azevedo Santos, Matthijs A.J.G. Koning, Célia Fonseca Guerra, Trevor A. Hamlin
{"title":"The Spectrum from van der Waals to Donor–Acceptor Bonding","authors":"Daniela Rodrigues Silva, Lucas de Azevedo Santos, Matthijs A.J.G. Koning, Célia Fonseca Guerra, Trevor A. Hamlin","doi":"10.1039/d5cp01533b","DOIUrl":null,"url":null,"abstract":"The chemical bond between halogenated borane Lewis acids and a variety of Lewis bases of varying strength (from strong to weak: NH₃, MeCN, N₂) has been quantum chemically explored using dispersion-corrected relativistic density functional theory (DFT) at ZORA-BLYP-D3(BJ)/TZ2P. We propose a unified picture of chemical bonding that exists on a continuum where weaker van der Waals (commonly referred to as “noncovalent”) interactions at longer distances transition into stronger donor–acceptor (commonly referred to as covalent) complexes at shorter distances. Remarkably, depending on the strength of the Lewis base, an intermediate regime is observed where both van der Waals and donor–acceptor complexes are observed. This study demonstrates that a covalent component is ubiquitous across the bonding spectrum, with the stability of the minima on potential energy surfaces determined by the strength of the Lewis acid-base interaction. We advocate for classifying Lewis pairs as strongly or weakly bonded based on whether their covalent interaction is strong enough to overcome the geometric penalty of bond formation. This work elucidates the fuzzy boundaries within chemical bonding.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"239 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp01533b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The chemical bond between halogenated borane Lewis acids and a variety of Lewis bases of varying strength (from strong to weak: NH₃, MeCN, N₂) has been quantum chemically explored using dispersion-corrected relativistic density functional theory (DFT) at ZORA-BLYP-D3(BJ)/TZ2P. We propose a unified picture of chemical bonding that exists on a continuum where weaker van der Waals (commonly referred to as “noncovalent”) interactions at longer distances transition into stronger donor–acceptor (commonly referred to as covalent) complexes at shorter distances. Remarkably, depending on the strength of the Lewis base, an intermediate regime is observed where both van der Waals and donor–acceptor complexes are observed. This study demonstrates that a covalent component is ubiquitous across the bonding spectrum, with the stability of the minima on potential energy surfaces determined by the strength of the Lewis acid-base interaction. We advocate for classifying Lewis pairs as strongly or weakly bonded based on whether their covalent interaction is strong enough to overcome the geometric penalty of bond formation. This work elucidates the fuzzy boundaries within chemical bonding.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.