Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Yubo Li, Saba Al-Sayouri, Rema Padman
{"title":"Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques.","authors":"Yubo Li, Saba Al-Sayouri, Rema Padman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the potential of utilizing administrative claims data, combined with advanced machine learning and deep learning techniques, to predict the progression of Chronic Kidney Disease (CKD) to End-Stage Renal Disease (ESRD). We analyze a comprehensive, 10-year dataset provided by a major health insurance organization to develop prediction models for multiple observation windows using traditional machine learning methods such as Random Forest and XGBoost as well as deep learning approaches such as Long Short-Term Memory (LSTM) networks. Our findings demonstrate that the LSTM model, particularly with a 24-month observation window, exhibits superior performance in predicting ESRD progression, outperforming existing models in the literature. We further apply SHap-ley Additive exPlanations (SHAP) analysis to enhance interpretability, providing insights into the impact of individual features on predictions at the individual patient level. This study underscores the value of leveraging administrative claims data for CKD management and predicting ESRD progression.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"664-673"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the potential of utilizing administrative claims data, combined with advanced machine learning and deep learning techniques, to predict the progression of Chronic Kidney Disease (CKD) to End-Stage Renal Disease (ESRD). We analyze a comprehensive, 10-year dataset provided by a major health insurance organization to develop prediction models for multiple observation windows using traditional machine learning methods such as Random Forest and XGBoost as well as deep learning approaches such as Long Short-Term Memory (LSTM) networks. Our findings demonstrate that the LSTM model, particularly with a 24-month observation window, exhibits superior performance in predicting ESRD progression, outperforming existing models in the literature. We further apply SHap-ley Additive exPlanations (SHAP) analysis to enhance interpretability, providing insights into the impact of individual features on predictions at the individual patient level. This study underscores the value of leveraging administrative claims data for CKD management and predicting ESRD progression.

迈向可解释的终末期肾病(ESRD)预测:利用行政索赔数据和可解释的人工智能技术。
本研究探讨了利用行政索赔数据,结合先进的机器学习和深度学习技术,预测慢性肾脏疾病(CKD)到终末期肾脏疾病(ESRD)进展的潜力。我们分析了由一家大型健康保险组织提供的全面的10年数据集,使用传统的机器学习方法(如Random Forest和XGBoost)以及深度学习方法(如长短期记忆(LSTM)网络)开发多个观测窗口的预测模型。我们的研究结果表明,LSTM模型,特别是具有24个月观察窗口的LSTM模型,在预测ESRD进展方面表现优异,优于文献中的现有模型。我们进一步应用SHAP -ley加性解释(SHAP)分析来提高可解释性,从而深入了解个体特征对个体患者水平预测的影响。本研究强调了利用行政索赔数据对CKD管理和预测ESRD进展的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信