Structured Knowledge Base Enhances Effective Use of Large Language Models for Metadata Curation.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Sowmya S Sundaram, Benjamin Solomon, Avani Khatri, Anisha Laumas, Purvesh Khatri, Mark A Musen
{"title":"Structured Knowledge Base Enhances Effective Use of Large Language Models for Metadata Curation.","authors":"Sowmya S Sundaram, Benjamin Solomon, Avani Khatri, Anisha Laumas, Purvesh Khatri, Mark A Musen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p><i>Metadata play a crucial role in ensuring the findability, accessibility, interoperability, and reusability of datasets. This paper investigates the potential of large language models (LLMs), specifically GPT-4, to improve adherence to metadata standards in existing datasets. We conducted experiments on 200 random data records describing human samples relating to lung cancer from the NCBI BioSample repository, evaluating GPT-4's ability to suggest edits for adherence to metadata standards. We computed the adherence accuracy of</i> field name-field value <i>pairs through a peer review process, and we observed a marginal average improvement in adherence to the standard data dictionary from 79% to 80% when using GPT-4. We then prompted GPT-4 with domain information in the form of the textual descriptions of CEDAR metadata templates and recorded a statistically significant improvement to 97% from 79% (p<0.01). These results indicate that LLMs show promise for use in automated metadata curation when integrated with a structured knowledge base, though they may struggle when unaided.</i></p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"1050-1058"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metadata play a crucial role in ensuring the findability, accessibility, interoperability, and reusability of datasets. This paper investigates the potential of large language models (LLMs), specifically GPT-4, to improve adherence to metadata standards in existing datasets. We conducted experiments on 200 random data records describing human samples relating to lung cancer from the NCBI BioSample repository, evaluating GPT-4's ability to suggest edits for adherence to metadata standards. We computed the adherence accuracy of field name-field value pairs through a peer review process, and we observed a marginal average improvement in adherence to the standard data dictionary from 79% to 80% when using GPT-4. We then prompted GPT-4 with domain information in the form of the textual descriptions of CEDAR metadata templates and recorded a statistically significant improvement to 97% from 79% (p<0.01). These results indicate that LLMs show promise for use in automated metadata curation when integrated with a structured knowledge base, though they may struggle when unaided.

结构化知识库增强了元数据管理中大型语言模型的有效使用。
元数据在确保数据集的可查找性、可访问性、互操作性和可重用性方面起着至关重要的作用。本文研究了大型语言模型(llm)的潜力,特别是GPT-4,以提高对现有数据集中元数据标准的遵守。我们对来自NCBI生物样本库的200个随机数据记录进行了实验,这些数据记录描述了与肺癌相关的人类样本,评估了GPT-4根据元数据标准建议编辑的能力。我们通过同行评审过程计算了字段名称-字段值对的一致性准确性,我们观察到使用GPT-4时,对标准数据字典的一致性从79%提高到80%。然后,我们用CEDAR元数据模板文本描述形式的域信息提示GPT-4,并记录了统计上显着的改进,从79%提高到97% (p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信