Artificial Intelligence-assisted Biomedical Literature Knowledge Synthesis to Support Decision-making in Precision Oncology.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Ting He, Kory Kreimeyer, Mimi Najjar, Jonathan Spiker, Maria Fatteh, Valsamo Anagnostou, Taxiarchis Botsis
{"title":"Artificial Intelligence-assisted Biomedical Literature Knowledge Synthesis to Support Decision-making in Precision Oncology.","authors":"Ting He, Kory Kreimeyer, Mimi Najjar, Jonathan Spiker, Maria Fatteh, Valsamo Anagnostou, Taxiarchis Botsis","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The delivery of effective targeted therapies requires comprehensive analyses of the molecular profiling of tumors and matching with clinical phenotypes in the context of existing knowledge described in biomedical literature, registries, and knowledge bases. We evaluated the performance of natural language processing (NLP) approaches in supporting knowledge retrieval and synthesis from the biomedical literature. We tested PubTator 3.0, Bidirectional Encoder Representations from Transformers (BERT), and Large Language Models (LLMs) and evaluated their ability to support named entity recognition (NER) and relation extraction (RE) from biomedical texts. PubTator 3.0 and the BioBERT model performed best in the NER task (best F1-score 0.93 and 0.89, respectively), while BioBERT outperformed all other solutions in the RE task (best F1-score 0.79) and a specific use case it was applied to by recognizing nearly all entity mentions and most of the relations. Our findings support the use of AI-assisted approaches in facilitating precision oncology decision-making.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"513-522"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The delivery of effective targeted therapies requires comprehensive analyses of the molecular profiling of tumors and matching with clinical phenotypes in the context of existing knowledge described in biomedical literature, registries, and knowledge bases. We evaluated the performance of natural language processing (NLP) approaches in supporting knowledge retrieval and synthesis from the biomedical literature. We tested PubTator 3.0, Bidirectional Encoder Representations from Transformers (BERT), and Large Language Models (LLMs) and evaluated their ability to support named entity recognition (NER) and relation extraction (RE) from biomedical texts. PubTator 3.0 and the BioBERT model performed best in the NER task (best F1-score 0.93 and 0.89, respectively), while BioBERT outperformed all other solutions in the RE task (best F1-score 0.79) and a specific use case it was applied to by recognizing nearly all entity mentions and most of the relations. Our findings support the use of AI-assisted approaches in facilitating precision oncology decision-making.

人工智能辅助生物医学文献知识综合支持精准肿瘤学决策。
提供有效的靶向治疗需要在生物医学文献、注册表和知识库中描述的现有知识背景下,对肿瘤分子谱进行全面分析,并与临床表型相匹配。我们评估了自然语言处理(NLP)方法在支持生物医学文献知识检索和合成方面的性能。我们测试了PubTator 3.0、来自变形器的双向编码器表示(BERT)和大型语言模型(llm),并评估了它们支持生物医学文本的命名实体识别(NER)和关系提取(RE)的能力。PubTator 3.0和BioBERT模型在NER任务中表现最好(最佳f1得分分别为0.93和0.89),而BioBERT在RE任务中表现优于所有其他解决方案(最佳f1得分为0.79),并且通过识别几乎所有实体提及和大多数关系,它应用于一个特定的用例。我们的研究结果支持使用人工智能辅助方法来促进精确的肿瘤学决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信