Analyzing Dementia Caregivers' Experiences on Twitter: A Term-Weighted Topic Modeling Approach.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Yanbo Feng, Bojian Hou, Ari Klein, Karen O'Connor, Jiong Chen, Andrées Mondragóon, Shu Yang, Graciela Gonzalez-Hernandez, Li Shen
{"title":"Analyzing Dementia Caregivers' Experiences on Twitter: A Term-Weighted Topic Modeling Approach.","authors":"Yanbo Feng, Bojian Hou, Ari Klein, Karen O'Connor, Jiong Chen, Andrées Mondragóon, Shu Yang, Graciela Gonzalez-Hernandez, Li Shen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Dementia profoundly impacts patients and their families, making it essential to understand the experiences and concerns offamily caregivers for enhanced support and care. This study introduces a novel approach to analyzing tweets from individuals whose family members suffer from dementia. We preprocessed our collected Twitter (now X) data using advanced natural language processing techniques and enhanced conventional topic model-Gibbs Sampling Dirichlet Multinomial Mixture Model (GSDMM)-with term-weighting strategies to improve topic clarity. This enhanced approach enabled the identification of key topics among dementia-affected families, offering semantically rich and contextually coherent topics, demonstrating that our method outperforms the state-of-the-art BERTopic model in clarity and consistency. Leveraging ChatGPT 4 alongside two human experts, we uncovered the multifaceted challenges faced by family caregivers. This work aims to provide healthcare professionals, researchers, and support organizations with a valuable tool to better understand and address the needs offamily caregivers.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"407-416"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099380/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dementia profoundly impacts patients and their families, making it essential to understand the experiences and concerns offamily caregivers for enhanced support and care. This study introduces a novel approach to analyzing tweets from individuals whose family members suffer from dementia. We preprocessed our collected Twitter (now X) data using advanced natural language processing techniques and enhanced conventional topic model-Gibbs Sampling Dirichlet Multinomial Mixture Model (GSDMM)-with term-weighting strategies to improve topic clarity. This enhanced approach enabled the identification of key topics among dementia-affected families, offering semantically rich and contextually coherent topics, demonstrating that our method outperforms the state-of-the-art BERTopic model in clarity and consistency. Leveraging ChatGPT 4 alongside two human experts, we uncovered the multifaceted challenges faced by family caregivers. This work aims to provide healthcare professionals, researchers, and support organizations with a valuable tool to better understand and address the needs offamily caregivers.

分析痴呆症护理者在Twitter上的经历:一种术语加权主题建模方法。
痴呆症对患者及其家庭产生深远影响,因此了解家庭照护者的经历和关切,以加强支持和照护至关重要。这项研究引入了一种新的方法来分析家庭成员患有痴呆症的个人的推文。我们使用先进的自然语言处理技术和增强的传统主题模型(gibbs Sampling Dirichlet多项式混合模型(GSDMM))预处理收集到的Twitter(现在是X)数据,并使用术语加权策略来提高主题清晰度。这种增强的方法能够识别痴呆症影响家庭中的关键主题,提供语义丰富和上下文连贯的主题,表明我们的方法在清晰度和一致性方面优于最先进的BERTopic模型。利用ChatGPT 4和两位人类专家,我们发现了家庭护理人员面临的多方面挑战。这项工作旨在为医疗保健专业人员、研究人员和支持组织提供一个有价值的工具,以更好地了解和解决家庭照顾者的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信