A Novel Sentence Transformer-based Natural Language Processing Approach for Schema Mapping of Electronic Health Records to the OMOP Common Data Model.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Xinyu Zhou, Lovedeep Singh Dhingra, Arya Aminorroaya, Philip Adejumo, Rohan Khera
{"title":"A Novel Sentence Transformer-based Natural Language Processing Approach for Schema Mapping of Electronic Health Records to the OMOP Common Data Model.","authors":"Xinyu Zhou, Lovedeep Singh Dhingra, Arya Aminorroaya, Philip Adejumo, Rohan Khera","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mapping electronic health records (EHR) data to common data models (CDMs) enables the standardization of clinical records, enhancing interoperability and enabling large-scale, multi-centered clinical investigations. Using 2 large publicly available datasets, we developed transformer-based natural language processing models to map medication-related concepts from the EHR at a large and diverse healthcare system to standard concepts in OMOP CDM. We validated the model outputs against standard concepts manually mapped by clinicians. Our best model reached out-of-box accuracies of 96.5% in mapping the 200 most common drugs and 83.0% in mapping 200 random drugs in the EHR. For these tasks, this model outperformed a state-of-the-art large language model (SFR-Embedding-Mistral, 89.5% and 66.5% in accuracy for the two tasks), a widely used software for schema mapping (Usagi, 90.0% and 70.0% in accuracy), and direct string match (7.5% and 7.5% accuracy). Transformer-based deep learning models outperform existing approaches in the standardized mapping of EHR elements and can facilitate an end-to-end automated EHR transformation pipeline.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"1332-1339"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099400/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mapping electronic health records (EHR) data to common data models (CDMs) enables the standardization of clinical records, enhancing interoperability and enabling large-scale, multi-centered clinical investigations. Using 2 large publicly available datasets, we developed transformer-based natural language processing models to map medication-related concepts from the EHR at a large and diverse healthcare system to standard concepts in OMOP CDM. We validated the model outputs against standard concepts manually mapped by clinicians. Our best model reached out-of-box accuracies of 96.5% in mapping the 200 most common drugs and 83.0% in mapping 200 random drugs in the EHR. For these tasks, this model outperformed a state-of-the-art large language model (SFR-Embedding-Mistral, 89.5% and 66.5% in accuracy for the two tasks), a widely used software for schema mapping (Usagi, 90.0% and 70.0% in accuracy), and direct string match (7.5% and 7.5% accuracy). Transformer-based deep learning models outperform existing approaches in the standardized mapping of EHR elements and can facilitate an end-to-end automated EHR transformation pipeline.

基于句子转换器的电子健康记录到OMOP公共数据模型模式映射的自然语言处理方法。
将电子健康记录(EHR)数据映射到公共数据模型(cdm)可以实现临床记录的标准化,增强互操作性并实现大规模、多中心的临床调查。使用2个大型公开可用的数据集,我们开发了基于转换器的自然语言处理模型,将大型多样化医疗保健系统中的EHR中与药物相关的概念映射到OMOP CDM中的标准概念。我们根据临床医生手动映射的标准概念验证了模型输出。我们的最佳模型在绘制200种最常见药物的图谱时达到了96.5%的开箱外准确率,在绘制200种随机药物的图谱时达到了83.0%。对于这些任务,该模型优于最先进的大型语言模型(sr - embedging - mistral,两个任务的准确率分别为89.5%和66.5%)、广泛使用的模式映射软件(Usagi,准确率分别为90.0%和70.0%)和直接字符串匹配(准确率分别为7.5%和7.5%)。基于转换器的深度学习模型在EHR元素的标准化映射方面优于现有方法,并且可以促进端到端的自动化EHR转换管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信