{"title":"A Novel Sentence Transformer-based Natural Language Processing Approach for Schema Mapping of Electronic Health Records to the OMOP Common Data Model.","authors":"Xinyu Zhou, Lovedeep Singh Dhingra, Arya Aminorroaya, Philip Adejumo, Rohan Khera","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mapping electronic health records (EHR) data to common data models (CDMs) enables the standardization of clinical records, enhancing interoperability and enabling large-scale, multi-centered clinical investigations. Using 2 large publicly available datasets, we developed transformer-based natural language processing models to map medication-related concepts from the EHR at a large and diverse healthcare system to standard concepts in OMOP CDM. We validated the model outputs against standard concepts manually mapped by clinicians. Our best model reached out-of-box accuracies of 96.5% in mapping the 200 most common drugs and 83.0% in mapping 200 random drugs in the EHR. For these tasks, this model outperformed a state-of-the-art large language model (SFR-Embedding-Mistral, 89.5% and 66.5% in accuracy for the two tasks), a widely used software for schema mapping (Usagi, 90.0% and 70.0% in accuracy), and direct string match (7.5% and 7.5% accuracy). Transformer-based deep learning models outperform existing approaches in the standardized mapping of EHR elements and can facilitate an end-to-end automated EHR transformation pipeline.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"1332-1339"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099400/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mapping electronic health records (EHR) data to common data models (CDMs) enables the standardization of clinical records, enhancing interoperability and enabling large-scale, multi-centered clinical investigations. Using 2 large publicly available datasets, we developed transformer-based natural language processing models to map medication-related concepts from the EHR at a large and diverse healthcare system to standard concepts in OMOP CDM. We validated the model outputs against standard concepts manually mapped by clinicians. Our best model reached out-of-box accuracies of 96.5% in mapping the 200 most common drugs and 83.0% in mapping 200 random drugs in the EHR. For these tasks, this model outperformed a state-of-the-art large language model (SFR-Embedding-Mistral, 89.5% and 66.5% in accuracy for the two tasks), a widely used software for schema mapping (Usagi, 90.0% and 70.0% in accuracy), and direct string match (7.5% and 7.5% accuracy). Transformer-based deep learning models outperform existing approaches in the standardized mapping of EHR elements and can facilitate an end-to-end automated EHR transformation pipeline.