A Generative Foundation Model for Structured Patient Trajectory Data.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Yu Akagi, Tomohisa Seki, Yoshimasa Kawazoe, Toru Takiguchi, Kazuhiko Ohe
{"title":"A Generative Foundation Model for Structured Patient Trajectory Data.","authors":"Yu Akagi, Tomohisa Seki, Yoshimasa Kawazoe, Toru Takiguchi, Kazuhiko Ohe","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in artificial intelligence propelled the implementation of general-purpose multitasking agents called foundation models. However, it has been challenging for foundation models to handle structured longitudinal medical data due to the mixed data types and variable timestamps in these data. Acquiring large training data is another obstacle. This study proposes a generative foundation model to manage patient trajectory data of variable lengths with mixed data types (categorical and continuous variables). Additionally, we propose a data pipeline to supply real-world data large enough to support foundation models. We locally obtained a large clinical dataset with a reproducible data pipeline scheme that leveraged a national HL7 message standard. Our trained model acquired the ability to suggest clinically relevant medical concepts and continuous variables for general purposes. The model also synthesized a database of more than 10,000 realistic patient trajectories. Our results suggest promising future downstream clinical applications of the foundation model.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"124-133"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099423/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in artificial intelligence propelled the implementation of general-purpose multitasking agents called foundation models. However, it has been challenging for foundation models to handle structured longitudinal medical data due to the mixed data types and variable timestamps in these data. Acquiring large training data is another obstacle. This study proposes a generative foundation model to manage patient trajectory data of variable lengths with mixed data types (categorical and continuous variables). Additionally, we propose a data pipeline to supply real-world data large enough to support foundation models. We locally obtained a large clinical dataset with a reproducible data pipeline scheme that leveraged a national HL7 message standard. Our trained model acquired the ability to suggest clinically relevant medical concepts and continuous variables for general purposes. The model also synthesized a database of more than 10,000 realistic patient trajectories. Our results suggest promising future downstream clinical applications of the foundation model.

结构化患者轨迹数据的生成基础模型。
人工智能的进步推动了通用多任务代理(称为基础模型)的实现。然而,由于数据类型的混合和时间戳的变化,基础模型处理结构化纵向医学数据一直是一个挑战。获取大型训练数据是另一个障碍。本研究提出了一种生成基础模型,用于管理混合数据类型(分类变量和连续变量)的变长度患者轨迹数据。此外,我们提出了一个数据管道来提供足够大的真实数据来支持基础模型。我们在当地获得了一个大型临床数据集,该数据集具有可重复的数据管道方案,利用了国家HL7消息标准。我们训练的模型获得了建议临床相关的医学概念和一般用途的连续变量的能力。该模型还合成了一个包含超过10,000个真实患者轨迹的数据库。我们的研究结果表明,该基础模型的下游临床应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信