Policy Library Redundancy Analysis Using K-means Clustering.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Michael D Wendorf, Christopher I Macintosh
{"title":"Policy Library Redundancy Analysis Using K-means Clustering.","authors":"Michael D Wendorf, Christopher I Macintosh","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This capstone project investigates the application of artificial intelligence (AI) techniques, specifically sentence embedding and k-means clustering using large language models, to address the challenge of policy library redundancy within a healthcare setting. The project aimed to demonstrate the viability of using AI-assisted tools in policy library management, targeting a 5% reduction in the overall policy library at a large academic healthcare system. By collaborating with the accreditation team and developing a Python-script prototype, the study showed that AI-assisted methods could significantly enhance efficiency and reduce labor in policy library management. Results indicate a potential 4% reduction in library size, underscoring the method's effectiveness and the opportunity for further optimization. This research contributes to the emerging field of AI in healthcare administration, offering a scalable model for improving policy library management processes in various healthcare contexts.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"1225-1234"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This capstone project investigates the application of artificial intelligence (AI) techniques, specifically sentence embedding and k-means clustering using large language models, to address the challenge of policy library redundancy within a healthcare setting. The project aimed to demonstrate the viability of using AI-assisted tools in policy library management, targeting a 5% reduction in the overall policy library at a large academic healthcare system. By collaborating with the accreditation team and developing a Python-script prototype, the study showed that AI-assisted methods could significantly enhance efficiency and reduce labor in policy library management. Results indicate a potential 4% reduction in library size, underscoring the method's effectiveness and the opportunity for further optimization. This research contributes to the emerging field of AI in healthcare administration, offering a scalable model for improving policy library management processes in various healthcare contexts.

基于k -均值聚类的策略库冗余分析。
这个顶点项目研究了人工智能(AI)技术的应用,特别是使用大型语言模型的句子嵌入和k-means聚类,以解决医疗保健环境中策略库冗余的挑战。该项目旨在证明在政策图书馆管理中使用人工智能辅助工具的可行性,目标是将大型学术医疗保健系统的总体政策图书馆减少5%。通过与认证团队合作并开发python脚本原型,该研究表明,人工智能辅助方法可以显着提高政策库管理的效率并减少劳动力。结果表明,库的大小可能减少4%,强调了该方法的有效性和进一步优化的机会。这项研究有助于人工智能在医疗保健管理中的新兴领域,为改善各种医疗保健环境中的政策库管理流程提供了一个可扩展的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信