Optimizing Medication Querying Using Ontology-Driven Approach with OMOP: with an application to a large-scale COVID-19 EHR dataset.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Xiaojin Li, Yan Huang, Licong Cui, Shiqiang Tao, Guo-Qiang Zhang
{"title":"Optimizing Medication Querying Using Ontology-Driven Approach with OMOP: with an application to a large-scale COVID-19 EHR dataset.","authors":"Xiaojin Li, Yan Huang, Licong Cui, Shiqiang Tao, Guo-Qiang Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient querying for medication information in Electronic Health Record (EHR) datasets is crucial for effective patient care and clinical research. To address the complexity and data volume challenges involved in efficient medication information retrieval, we propose an ontology-driven medication query (ODMQ) optimization approach, leveraging the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). Integrating semantic ontology structures from the OMOP CDM can help enhance query accuracy and efficiency by broadening the scope of relevant medication terms like drug names, National Drug Codes, and generics, resulting in more comprehensive query outcomes than traditional methods. ODMQ significantly reduces manual search time and enhances query capabilities. We validate ODMQ's efficacy using real-world COVID-19 EHR data, demonstrating improved query performance. Through a comprehensive manual review, ODMQ ensures that expanded search terms are relevant to user inputs. It also includes an intuitive query interface and visualizes patient history for result validation and exploration.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"693-702"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient querying for medication information in Electronic Health Record (EHR) datasets is crucial for effective patient care and clinical research. To address the complexity and data volume challenges involved in efficient medication information retrieval, we propose an ontology-driven medication query (ODMQ) optimization approach, leveraging the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). Integrating semantic ontology structures from the OMOP CDM can help enhance query accuracy and efficiency by broadening the scope of relevant medication terms like drug names, National Drug Codes, and generics, resulting in more comprehensive query outcomes than traditional methods. ODMQ significantly reduces manual search time and enhances query capabilities. We validate ODMQ's efficacy using real-world COVID-19 EHR data, demonstrating improved query performance. Through a comprehensive manual review, ODMQ ensures that expanded search terms are relevant to user inputs. It also includes an intuitive query interface and visualizes patient history for result validation and exploration.

基于OMOP的本体驱动方法优化药物查询:基于大规模COVID-19电子病历数据集的应用
在电子健康记录(EHR)数据集中高效查询药物信息对于有效的患者护理和临床研究至关重要。为了解决高效药物信息检索所涉及的复杂性和数据量挑战,我们提出了一种利用观察性医疗结果合作伙伴关系(OMOP)公共数据模型(CDM)的本体驱动药物查询(ODMQ)优化方法。集成来自OMOP CDM的语义本体结构可以通过扩大相关药物术语(如药品名称、国家药品代码和仿制药)的范围来帮助提高查询的准确性和效率,从而产生比传统方法更全面的查询结果。ODMQ显著减少了手动搜索时间并增强了查询功能。我们使用真实的COVID-19 EHR数据验证了ODMQ的有效性,展示了改进的查询性能。通过全面的人工审查,ODMQ确保扩展的搜索词与用户输入相关。它还包括一个直观的查询界面和可视化的病人的历史,结果验证和探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信