AnnSQL: a Python SQL-based package for fast large-scale single-cell genomics analysis using minimal computational resources.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-05-05 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf105
Kenny Pavan, Arpiar Saunders
{"title":"AnnSQL: a Python SQL-based package for fast large-scale single-cell genomics analysis using minimal computational resources.","authors":"Kenny Pavan, Arpiar Saunders","doi":"10.1093/bioadv/vbaf105","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>As single-cell genomics technologies continue to accelerate biological discovery, software tools that use elegant syntax and minimal computational resources to analyze atlas-scale datasets are increasingly needed. Here, we introduce AnnSQL, a Python package that constructs an AnnData-inspired database using the in-process DuckDb engine, enabling orders-of-magnitude performance enhancements for parsing single-cell genomics datasets with the ease of SQL. We highlight AnnSQL functionality and demonstrate transformative runtime improvements by comparing AnnData or AnnSQL operations on a 4.4 million cell single-nucleus RNA-seq dataset: AnnSQL-based operations were executed in minutes on a laptop for which equivalent operations in AnnData or Seurat largely failed (or were ∼700× slower) on a high-performance computing cluster. AnnSQL lowers computational barriers for large-scale single-cell/nucleus RNA-seq analysis on a personal computer, while demonstrating a promising computational infrastructure extendable for complete single-cell workflows across various genome-wide measurements.</p><p><strong>Availability and implementation: </strong>AnnSQL is a pip installable package that can be found at https://github.com/ArpiarSaundersLab/annsql along with documentation at https://docs.annsql.com.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf105"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: As single-cell genomics technologies continue to accelerate biological discovery, software tools that use elegant syntax and minimal computational resources to analyze atlas-scale datasets are increasingly needed. Here, we introduce AnnSQL, a Python package that constructs an AnnData-inspired database using the in-process DuckDb engine, enabling orders-of-magnitude performance enhancements for parsing single-cell genomics datasets with the ease of SQL. We highlight AnnSQL functionality and demonstrate transformative runtime improvements by comparing AnnData or AnnSQL operations on a 4.4 million cell single-nucleus RNA-seq dataset: AnnSQL-based operations were executed in minutes on a laptop for which equivalent operations in AnnData or Seurat largely failed (or were ∼700× slower) on a high-performance computing cluster. AnnSQL lowers computational barriers for large-scale single-cell/nucleus RNA-seq analysis on a personal computer, while demonstrating a promising computational infrastructure extendable for complete single-cell workflows across various genome-wide measurements.

Availability and implementation: AnnSQL is a pip installable package that can be found at https://github.com/ArpiarSaundersLab/annsql along with documentation at https://docs.annsql.com.

AnnSQL:一个基于Python sql的包,用于使用最少的计算资源进行快速大规模单细胞基因组分析。
摘要:随着单细胞基因组学技术不断加速生物发现,越来越需要使用优雅语法和最小计算资源来分析atlas规模数据集的软件工具。在这里,我们将介绍AnnSQL,这是一个Python包,它使用进程内DuckDb引擎构建了一个受anndata启发的数据库,通过SQL的易用性,可以实现数量级的性能增强,从而解析单细胞基因组数据集。我们强调了AnnSQL的功能,并通过比较AnnData或AnnSQL在440万细胞单核RNA-seq数据集上的操作来展示变变性的运行时改进:基于AnnSQL的操作在笔记本电脑上几分钟内执行,而在高性能计算集群上,AnnData或Seurat中的等效操作基本上失败(或慢约700倍)。AnnSQL降低了在个人计算机上进行大规模单细胞/细胞核RNA-seq分析的计算障碍,同时展示了一个有前途的计算基础设施,可扩展到跨各种全基因组测量的完整单细胞工作流程。可用性和实现:AnnSQL是一个pip可安装包,可以在https://github.com/ArpiarSaundersLab/annsql上找到,文档在https://docs.annsql.com上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信