Characterizing Treatment Non-responders and Responders in Completed Alzheimer's Disease Clinical Trials.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Dulin Wang, Yaobin Ling, Kristofer Harris, Paul E Schulz, Xiaoqian Jiang, Yejin Kim
{"title":"Characterizing Treatment Non-responders and Responders in Completed Alzheimer's Disease Clinical Trials.","authors":"Dulin Wang, Yaobin Ling, Kristofer Harris, Paul E Schulz, Xiaoqian Jiang, Yejin Kim","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Characterizing differential responses to Alzheimer's disease (AD) drugs will provide better insights into personalized treatment strategies. Our study aims to identify heterogeneous treatment effects and pre-treatment features that moderate the treatment effect of Galantamine, Bapineuzumab, and Semagacestat from completed trial data. The causal forest method can capture heterogeneity in treatment responses. We applied causal forest modeling to estimate the treatment effect and identify efficacy moderators in each trial. We found several patient's pretreatment conditions that determined treatment efficacy. For example, in Galantamine trials, whole brain volume (1092.54 vs. 1060.67 ml, P < .001) and right hippocampal volume (2.43e-3 vs. 2.79e-3, P < .001) are significantly different between responsive and non-responsive subgroups. Overall, our implementation of causal forests in AD clinical trials reveals the heterogeneous treatment effects and different moderators for AD drug responses, highlighting promising personalized treatment based on patient-specific characteristics in AD research and drug development.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"1176-1185"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099406/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Characterizing differential responses to Alzheimer's disease (AD) drugs will provide better insights into personalized treatment strategies. Our study aims to identify heterogeneous treatment effects and pre-treatment features that moderate the treatment effect of Galantamine, Bapineuzumab, and Semagacestat from completed trial data. The causal forest method can capture heterogeneity in treatment responses. We applied causal forest modeling to estimate the treatment effect and identify efficacy moderators in each trial. We found several patient's pretreatment conditions that determined treatment efficacy. For example, in Galantamine trials, whole brain volume (1092.54 vs. 1060.67 ml, P < .001) and right hippocampal volume (2.43e-3 vs. 2.79e-3, P < .001) are significantly different between responsive and non-responsive subgroups. Overall, our implementation of causal forests in AD clinical trials reveals the heterogeneous treatment effects and different moderators for AD drug responses, highlighting promising personalized treatment based on patient-specific characteristics in AD research and drug development.

已完成的阿尔茨海默病临床试验中治疗无反应和反应的特征
表征对阿尔茨海默病(AD)药物的不同反应将为个性化治疗策略提供更好的见解。我们的研究旨在从已完成的试验数据中确定加兰他敏、巴哌珠单抗和西马司他的异质性治疗效果和治疗前特征。因果森林方法可以捕捉到处理反应的异质性。我们应用因果森林模型来估计治疗效果,并在每个试验中确定疗效调节因子。我们发现几个患者的预处理条件决定了治疗效果。例如,在加兰他敏试验中,全脑体积(1092.54 ml vs 1060.67 ml, P < 0.001)和右侧海马体积(2.43e-3 vs 2.79e-3, P < 0.001)在反应亚组和非反应亚组之间存在显著差异。总体而言,我们在阿尔茨海默病临床试验中实施的因果森林揭示了阿尔茨海默病药物反应的异质性治疗效果和不同调节因子,突出了阿尔茨海默病研究和药物开发中基于患者特异性特征的个性化治疗的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信