Better Blood Pressure Control for Stroke Patients in the ICU: A Deep Reinforcement Learning with Supervised Guidance Approach for Adaptive Infusion Rate Tuning.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Kun-Yi Chen, Adnan I Qureshi, William I Baskett, Chi-Ren Shyu
{"title":"Better Blood Pressure Control for Stroke Patients in the ICU: A Deep Reinforcement Learning with Supervised Guidance Approach for Adaptive Infusion Rate Tuning.","authors":"Kun-Yi Chen, Adnan I Qureshi, William I Baskett, Chi-Ren Shyu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Blood pressure variability (BPV) plays a critical role in vascular diseases, particularly in acute ischemic stroke patients in intensive care units (ICUs), where higher BPV correlates with increased mortality rates. Current interventions lack effective methods for controlling BPV across consecutive time windows. To addressing this gap, we propose an offline deep reinforcement learning approach with supervised guidance to regulate systolic BPV in the following consecutive time windows by optimizing intravenous nicardipine infusion rates for intracerebral hemorrhage patients. Using clinically inspired reward functions, our method aims to tailor antihypertensive medication management within the critical 24-hour recovery window. Compared to human performance, our best method showed 57.52% and 126.01% improvements over the human baseline for maintaining BP within the desired range for the next time window and across two consecutive time windows. This research promises streamlined antihypertensive medication dosing, offering potential just-in-time adaptive interventions through automated pumps during stroke patients' ICU stays.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"271-280"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Blood pressure variability (BPV) plays a critical role in vascular diseases, particularly in acute ischemic stroke patients in intensive care units (ICUs), where higher BPV correlates with increased mortality rates. Current interventions lack effective methods for controlling BPV across consecutive time windows. To addressing this gap, we propose an offline deep reinforcement learning approach with supervised guidance to regulate systolic BPV in the following consecutive time windows by optimizing intravenous nicardipine infusion rates for intracerebral hemorrhage patients. Using clinically inspired reward functions, our method aims to tailor antihypertensive medication management within the critical 24-hour recovery window. Compared to human performance, our best method showed 57.52% and 126.01% improvements over the human baseline for maintaining BP within the desired range for the next time window and across two consecutive time windows. This research promises streamlined antihypertensive medication dosing, offering potential just-in-time adaptive interventions through automated pumps during stroke patients' ICU stays.

ICU中风患者更好的血压控制:一种深度强化学习与监督指导的自适应输液速率调节方法。
血压变异性(BPV)在血管疾病中起着关键作用,特别是在重症监护病房(icu)的急性缺血性中风患者中,较高的BPV与死亡率增加相关。目前的干预措施缺乏有效的方法来控制连续时间窗内的BPV。为了解决这一差距,我们提出了一种离线深度强化学习方法,通过优化脑出血患者静脉尼卡地平输注速率,在随后的连续时间窗内调节收缩期BPV。利用临床启发的奖励功能,我们的方法旨在在关键的24小时恢复窗口内定制降压药物管理。与人类的表现相比,我们的最佳方法在将BP保持在下一个时间窗口和连续两个时间窗口内的期望范围内时,比人类基线分别提高了57.52%和126.01%。这项研究有望简化抗高血压药物剂量,在中风患者ICU住院期间,通过自动泵提供潜在的及时适应性干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信