Modeling Precision Feedback Knowledge for Healthcare Professional Learning and Quality Improvement.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Zach Landis-Lewis, Yidan Cao, Hana Chung, Peter Boisvert, Anjana Deep Renji, Patrick Galante, Ayshwarya Jagadeesan, Farid Seifi, Allison Janda, Nirav Shah, Andrew Krumm, Allen Flynn
{"title":"Modeling Precision Feedback Knowledge for Healthcare Professional Learning and Quality Improvement.","authors":"Zach Landis-Lewis, Yidan Cao, Hana Chung, Peter Boisvert, Anjana Deep Renji, Patrick Galante, Ayshwarya Jagadeesan, Farid Seifi, Allison Janda, Nirav Shah, Andrew Krumm, Allen Flynn","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Healthcare providers learn continuously, but better support for provider learning is needed as new biomedical knowledge is produced at an increasing rate alongside widespread use of EHR data for clinical performance measurement. Precision feedback is an approach to improve support for provider learning by prioritizing coaching and appreciation messages based on each message's motivational potential for a specific recipient. We developed a Precision Feedback Knowledge Base as an open resource to support precision feedback systems, containing knowledge models that hold potential as key infrastructure for learning health systems. We describe the design and development of the Precision Feedback Knowledge Base, as well as its key components, including quality measures, feedback message templates, causal pathway models, signal detectors, and prioritization algorithms. Presently, the knowledge base is implemented in a national-scale quality improvement consortium for anesthesia care, to enhance provider feedback email messages.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"628-637"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Healthcare providers learn continuously, but better support for provider learning is needed as new biomedical knowledge is produced at an increasing rate alongside widespread use of EHR data for clinical performance measurement. Precision feedback is an approach to improve support for provider learning by prioritizing coaching and appreciation messages based on each message's motivational potential for a specific recipient. We developed a Precision Feedback Knowledge Base as an open resource to support precision feedback systems, containing knowledge models that hold potential as key infrastructure for learning health systems. We describe the design and development of the Precision Feedback Knowledge Base, as well as its key components, including quality measures, feedback message templates, causal pathway models, signal detectors, and prioritization algorithms. Presently, the knowledge base is implemented in a national-scale quality improvement consortium for anesthesia care, to enhance provider feedback email messages.

为医疗保健专业人员学习和质量改进建模精确反馈知识。
医疗保健提供者不断学习,但随着新的生物医学知识以越来越快的速度产生,以及用于临床绩效衡量的电子病历数据的广泛使用,需要更好地支持提供者学习。精确反馈是一种改进对提供者学习的支持的方法,通过根据每个信息对特定接收者的激励潜力来优先处理指导和赞赏信息。我们开发了一个精确反馈知识库,作为支持精确反馈系统的开放资源,其中包含的知识模型具有作为学习型卫生系统关键基础设施的潜力。我们描述了精确反馈知识库的设计和开发,以及它的关键组件,包括质量度量、反馈消息模板、因果路径模型、信号检测器和优先级算法。目前,该知识库在全国范围内的麻醉护理质量改进联盟中实施,以增强提供者反馈的电子邮件信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信