Exploring the use of Artificial Genomes for Genome-wide Association Studies through the lens of Utility and Privacy.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Xinyue Wang, Sitao Min, Jaideep Vaidya
{"title":"Exploring the use of Artificial Genomes for Genome-wide Association Studies through the lens of Utility and Privacy.","authors":"Xinyue Wang, Sitao Min, Jaideep Vaidya","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Collaborative Genome-wide association studies (GWAS) have the potential to uncover rare genetic variant-trait associations by leveraging larger datasets and diverse population samples. Despite this potential, privacy concerns and cumbersome review processes for data validation and collaborator selection hinder their broader implementation. Advances in generative models present a possible solution by generating synthetic datasets that closely resemble real genomic data, thus enhancing privacy and expediting the review process. This study assesses the capability of deep generative models to produce artificial genomic data for GWAS applications. We evaluate two state-of-the-art models on real-world datasets, identifying significant limitations in their ability to generate high-quality artificial genomes. Furthermore, we demonstrate that prevailing privacy measures, mainly based on membership inference attacks, are inadequate for providing insightful privacy evaluations. Our findings highlight the critical challenges and suggest future directions for the effective use of artificial genomes in GWAS.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"1196-1205"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Collaborative Genome-wide association studies (GWAS) have the potential to uncover rare genetic variant-trait associations by leveraging larger datasets and diverse population samples. Despite this potential, privacy concerns and cumbersome review processes for data validation and collaborator selection hinder their broader implementation. Advances in generative models present a possible solution by generating synthetic datasets that closely resemble real genomic data, thus enhancing privacy and expediting the review process. This study assesses the capability of deep generative models to produce artificial genomic data for GWAS applications. We evaluate two state-of-the-art models on real-world datasets, identifying significant limitations in their ability to generate high-quality artificial genomes. Furthermore, we demonstrate that prevailing privacy measures, mainly based on membership inference attacks, are inadequate for providing insightful privacy evaluations. Our findings highlight the critical challenges and suggest future directions for the effective use of artificial genomes in GWAS.

通过效用和隐私的视角探索人工基因组在全基因组关联研究中的应用。
协同全基因组关联研究(GWAS)利用更大的数据集和不同的群体样本,有可能发现罕见的遗传变异-性状关联。尽管有这种潜力,但隐私问题和数据验证和合作者选择的繁琐审查过程阻碍了它们的广泛实施。生成模型的进步提供了一种可能的解决方案,即生成与真实基因组数据非常相似的合成数据集,从而增强隐私并加快审查过程。本研究评估了深度生成模型为GWAS应用生成人工基因组数据的能力。我们在真实世界的数据集上评估了两种最先进的模型,确定了它们产生高质量人工基因组的能力的重大局限性。此外,我们证明了主要基于成员推理攻击的现行隐私措施不足以提供有洞察力的隐私评估。我们的研究结果强调了在GWAS中有效使用人工基因组的关键挑战,并提出了未来的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信