LLMs-based Few-Shot Disease Predictions using EHR: A Novel Approach Combining Predictive Agent Reasoning and Critical Agent Instruction.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Hejie Cui, Zhuocheng Shen, Jieyu Zhang, Hui Shao, Lianhui Qin, Joyce C Ho, Carl Yang
{"title":"LLMs-based Few-Shot Disease Predictions using EHR: A Novel Approach Combining Predictive Agent Reasoning and Critical Agent Instruction.","authors":"Hejie Cui, Zhuocheng Shen, Jieyu Zhang, Hui Shao, Lianhui Qin, Joyce C Ho, Carl Yang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic health records (EHRs) contain valuable patient data for health-related prediction tasks, such as disease prediction. Traditional approaches rely on supervised learning methods that require large labeled datasets, which can be expensive and challenging to obtain. In this study, we investigate the feasibility of applying Large Language Models (LLMs) to convert structured patient visit data (e.g., diagnoses, labs, prescriptions) into natural language narratives. We evaluate the zero-shot and few-shot performance of LLMs using various EHR-prediction-oriented prompting strategies. Furthermore, we propose a novel approach that utilizes LLM agents with different roles: a predictor agent that makes predictions and generates reasoning processes and a critic agent that analyzes incorrect predictions and provides guidance for improving the reasoning of the predictor agent. Our results demonstrate that with the proposed approach, LLMs can achieve decent few-shot performance compared to traditional supervised learning methods in EHR-based disease predictions, suggesting its potential for health-oriented applications.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"319-328"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099430/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic health records (EHRs) contain valuable patient data for health-related prediction tasks, such as disease prediction. Traditional approaches rely on supervised learning methods that require large labeled datasets, which can be expensive and challenging to obtain. In this study, we investigate the feasibility of applying Large Language Models (LLMs) to convert structured patient visit data (e.g., diagnoses, labs, prescriptions) into natural language narratives. We evaluate the zero-shot and few-shot performance of LLMs using various EHR-prediction-oriented prompting strategies. Furthermore, we propose a novel approach that utilizes LLM agents with different roles: a predictor agent that makes predictions and generates reasoning processes and a critic agent that analyzes incorrect predictions and provides guidance for improving the reasoning of the predictor agent. Our results demonstrate that with the proposed approach, LLMs can achieve decent few-shot performance compared to traditional supervised learning methods in EHR-based disease predictions, suggesting its potential for health-oriented applications.

基于llms的基于EHR的少针疾病预测:一种结合预测代理推理和关键代理指导的新方法。
电子健康记录(EHRs)包含有价值的患者数据,用于与健康相关的预测任务,如疾病预测。传统的方法依赖于需要大量标记数据集的监督学习方法,这可能是昂贵且具有挑战性的。在本研究中,我们探讨了应用大语言模型(LLMs)将结构化患者访问数据(如诊断、实验室、处方)转换为自然语言叙述的可行性。我们使用各种面向ehr预测的提示策略来评估llm的零射击和少射击性能。此外,我们提出了一种利用具有不同角色的LLM代理的新方法:一个预测代理进行预测并生成推理过程,一个批评代理分析不正确的预测并为改进预测代理的推理提供指导。我们的研究结果表明,在基于ehr的疾病预测中,与传统的监督学习方法相比,llm可以获得不错的少数射击性能,这表明它具有面向健康的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信