Enhancing Antibiotic Stewardship: A Machine Learning Approach to Predicting Antibiotic Resistance in Inpatient Care.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Fateme Nateghi Haredasht, Manoj V Maddali, Stephen P Ma, Amy Chang, Grace Y E Kim, Niaz Banaei, Stanley Deresinski, Mary K Goldstein, Steven M Asch, Jonathan H Chen
{"title":"Enhancing Antibiotic Stewardship: A Machine Learning Approach to Predicting Antibiotic Resistance in Inpatient Care.","authors":"Fateme Nateghi Haredasht, Manoj V Maddali, Stephen P Ma, Amy Chang, Grace Y E Kim, Niaz Banaei, Stanley Deresinski, Mary K Goldstein, Steven M Asch, Jonathan H Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotics have been crucial in advancing medical treatments, but the growing threat of antibiotic resistance challenges these achievements and emphasizes the need for innovative stewardship strategies. In this study, we developed machine learning models, 'personalized antibiograms', to predict antibiotic resistance across five key antibiotics using Stanford's electronic health record data of 49,872 urine, blood, and respiratory infections. We aimed to ascertain the efficacy of these models in predicting antibiotic susceptibility and identify the clinical factors most indicative of resistance. Employing LightGBM, we incorporated demographics, prior resistance, prescriptions, and comorbidities as features. The models demonstrated notable discriminative ability, with AUROCs between 0.74 and 0.78, and highlighted prior resistance and prescriptions as significant predictive factors. The high specificity demonstrates machine learning models' potential to inform antibiotic de-escalation, aiding stewardship without risking safety. By leveraging machine learning with relevant clinical features, we show that it is feasible to improve empirical antibiotic prescribing.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"857-864"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotics have been crucial in advancing medical treatments, but the growing threat of antibiotic resistance challenges these achievements and emphasizes the need for innovative stewardship strategies. In this study, we developed machine learning models, 'personalized antibiograms', to predict antibiotic resistance across five key antibiotics using Stanford's electronic health record data of 49,872 urine, blood, and respiratory infections. We aimed to ascertain the efficacy of these models in predicting antibiotic susceptibility and identify the clinical factors most indicative of resistance. Employing LightGBM, we incorporated demographics, prior resistance, prescriptions, and comorbidities as features. The models demonstrated notable discriminative ability, with AUROCs between 0.74 and 0.78, and highlighted prior resistance and prescriptions as significant predictive factors. The high specificity demonstrates machine learning models' potential to inform antibiotic de-escalation, aiding stewardship without risking safety. By leveraging machine learning with relevant clinical features, we show that it is feasible to improve empirical antibiotic prescribing.

加强抗生素管理:一种预测住院患者抗生素耐药性的机器学习方法。
抗生素在推进医学治疗方面发挥了至关重要的作用,但抗生素耐药性日益增长的威胁挑战了这些成就,并强调需要创新的管理战略。在这项研究中,我们开发了机器学习模型,即“个性化抗生素图”,利用斯坦福大学49,872例尿液、血液和呼吸道感染的电子健康记录数据,预测五种关键抗生素的抗生素耐药性。我们的目的是确定这些模型在预测抗生素敏感性方面的功效,并确定最能指示耐药性的临床因素。采用LightGBM,我们将人口统计学、既往耐药性、处方和合并症作为特征。模型具有显著的判别能力,auroc在0.74 ~ 0.78之间,并突出既往耐药性和处方为显著的预测因素。高特异性表明机器学习模型有潜力为抗生素降级提供信息,在不冒安全风险的情况下帮助管理。通过利用具有相关临床特征的机器学习,我们表明改进经验性抗生素处方是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信