Benjamin C. Klementz , Siddharth S. Kulkarni , Kaitlyn M. Abshire , Prashant P. Sharma
{"title":"Exploring genome architecture as a source of phylogenetic characters for resolving the apulmonate arachnid polytomy","authors":"Benjamin C. Klementz , Siddharth S. Kulkarni , Kaitlyn M. Abshire , Prashant P. Sharma","doi":"10.1016/j.ympev.2025.108380","DOIUrl":null,"url":null,"abstract":"<div><div>Chromosome-level genome assemblies are powerful tools for identifying the presence of rare genomic changes that can overcome phylogenetically intractable problems. Chelicerata, the sister group to the remaining arthropods, harbors a soft polytomy at the base of an internal node named Euchelicerata, which is variably resolved across phylogenomic studies. As a result, seven orders, comprising horseshoe crabs and six apulmonate arachnid lineages, exhibit highly unstable placements from one study to the next, typically with maximal nodal support. Here, we analyzed recently released chromosome-level genomes of two of these orders, Opiliones (harvestmen) and Solifugae (camel spiders). We show that both Opiliones and Solifugae exhibit an unduplicated genome condition, as inferred from analysis of gene clusters, microRNAs, and macrosynteny. These results are congruent with phylogenomic studies that have refuted traditional morphological placements of Opiliones and Solifugae as close relatives of orders within Arachnopulmonata, a subset of six arachnid orders that are united by a shared whole genome duplication. Additionally, we examine irreversible chromosome fusion-with-mixing events as potential sources of phylogenetic data. We show that while fusion and mixing events are common in apulmonate arachnids, multiple mixing events support incompatible unrooted tree topologies. These results suggest that fusion and mixing events have evolved convergently in the chelicerate tree of life, particularly for extant lineages with a small number of chromosomes. Overall, our findings demonstrate that broader sampling of chelicerate genomes and establishment of genomic resources for key missing orders are essential to unlocking the potential of rare genomic changes as phylogenetic data sources.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"210 ","pages":"Article 108380"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1055790325000971","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chromosome-level genome assemblies are powerful tools for identifying the presence of rare genomic changes that can overcome phylogenetically intractable problems. Chelicerata, the sister group to the remaining arthropods, harbors a soft polytomy at the base of an internal node named Euchelicerata, which is variably resolved across phylogenomic studies. As a result, seven orders, comprising horseshoe crabs and six apulmonate arachnid lineages, exhibit highly unstable placements from one study to the next, typically with maximal nodal support. Here, we analyzed recently released chromosome-level genomes of two of these orders, Opiliones (harvestmen) and Solifugae (camel spiders). We show that both Opiliones and Solifugae exhibit an unduplicated genome condition, as inferred from analysis of gene clusters, microRNAs, and macrosynteny. These results are congruent with phylogenomic studies that have refuted traditional morphological placements of Opiliones and Solifugae as close relatives of orders within Arachnopulmonata, a subset of six arachnid orders that are united by a shared whole genome duplication. Additionally, we examine irreversible chromosome fusion-with-mixing events as potential sources of phylogenetic data. We show that while fusion and mixing events are common in apulmonate arachnids, multiple mixing events support incompatible unrooted tree topologies. These results suggest that fusion and mixing events have evolved convergently in the chelicerate tree of life, particularly for extant lineages with a small number of chromosomes. Overall, our findings demonstrate that broader sampling of chelicerate genomes and establishment of genomic resources for key missing orders are essential to unlocking the potential of rare genomic changes as phylogenetic data sources.
期刊介绍:
Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.