MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Yucheng Shi, Shaochen Xu, Tianze Yang, Zhengliang Liu, Tianming Liu, Xiang Li, Ninghao Liu
{"title":"MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering.","authors":"Yucheng Shi, Shaochen Xu, Tianze Yang, Zhengliang Liu, Tianming Liu, Xiang Li, Ninghao Liu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Large Language Models (LLMs), although powerful in general domains, often perform poorly on domain-specific tasks such as medical question answering (QA). In addition, LLMs tend to function as \"black-boxes\", making it challenging to modify their behavior. To address the problem, our work employs a transparent process of retrieval augmented generation (RAG), aiming to improve LLM responses without the need for fine-tuning or retraining. Specifically, we propose a comprehensive retrieval strategy to extract medical facts from an external knowledge base, and then inject them into the LLM's query prompt. Focusing on medical QA, we evaluate the impact of different retrieval models and the number of facts on LLM performance using the MedQA-SMILE dataset. Notably, our retrieval-augmented Vicuna-7B model exhibited an accuracy improvement from 44.46% to 48.54%. This work underscores the potential of RAG to enhance LLM performance, offering a practical approach to mitigate the challenges posed by black-box LLMs.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"1011-1020"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large Language Models (LLMs), although powerful in general domains, often perform poorly on domain-specific tasks such as medical question answering (QA). In addition, LLMs tend to function as "black-boxes", making it challenging to modify their behavior. To address the problem, our work employs a transparent process of retrieval augmented generation (RAG), aiming to improve LLM responses without the need for fine-tuning or retraining. Specifically, we propose a comprehensive retrieval strategy to extract medical facts from an external knowledge base, and then inject them into the LLM's query prompt. Focusing on medical QA, we evaluate the impact of different retrieval models and the number of facts on LLM performance using the MedQA-SMILE dataset. Notably, our retrieval-augmented Vicuna-7B model exhibited an accuracy improvement from 44.46% to 48.54%. This work underscores the potential of RAG to enhance LLM performance, offering a practical approach to mitigate the challenges posed by black-box LLMs.

MKRAG:医学知识检索增强生成医学问答。
大型语言模型(llm)虽然在一般领域中很强大,但在特定于领域的任务(如医疗问答)上的表现往往很差。此外,法学硕士往往像“黑盒”一样,很难改变他们的行为。为了解决这个问题,我们的工作采用了一个透明的检索增强生成(RAG)过程,旨在提高LLM响应,而无需微调或再培训。具体而言,我们提出了一种综合检索策略,从外部知识库中提取医学事实,然后将其注入LLM的查询提示符中。以医学QA为重点,我们使用MedQA-SMILE数据集评估了不同检索模型和事实数量对LLM性能的影响。值得注意的是,我们的检索增强Vicuna-7B模型的准确率从44.46%提高到48.54%。这项工作强调了RAG提高LLM性能的潜力,为减轻黑箱LLM带来的挑战提供了一种实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信