Early Disease Prediction Using a Text-Numerical Hybrid Model Using Large-Scale Clinical Real-World Data.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Ayaka Oka, Tatsuya Yamaguchi, Masaki Ishihara, Takayuki Baba, Tatsuya Sato, Kazuki Iwamoto, Ryo Iwamura, Shigetaka Toma, Kaho Ogura, Masahiro Kimura, Hokuto Morohoshi, Akio Nakamura
{"title":"Early Disease Prediction Using a Text-Numerical Hybrid Model Using Large-Scale Clinical Real-World Data.","authors":"Ayaka Oka, Tatsuya Yamaguchi, Masaki Ishihara, Takayuki Baba, Tatsuya Sato, Kazuki Iwamoto, Ryo Iwamura, Shigetaka Toma, Kaho Ogura, Masahiro Kimura, Hokuto Morohoshi, Akio Nakamura","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>To assist physicians in predicting diseases, most natural language processing (NLP) models have focused on progress notes in electronic medical records with full descriptions from the initial stage of patient diagnosis to the final stage of discharge. However, accurately predicting diseases in the early stage using initial notes is challenging due to limited information. To address this, a text-numerical hybrid method is developed to improve disease prediction accuracy. The method identifies \"Reliably predicted diseases (RPD)\" that can be robustly predicted in the NLP and Random Forest models even if there are missing values in the numerical data or the amount of text data is small. Results show that, among the predicted disease groups of the two models, diseases matching the RPD are preferentially adopted and integrated. Precision@10 reveals that our developed method has a relatively higher accuracy of 67.0% than the traditional NLP model.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"885-893"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099446/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To assist physicians in predicting diseases, most natural language processing (NLP) models have focused on progress notes in electronic medical records with full descriptions from the initial stage of patient diagnosis to the final stage of discharge. However, accurately predicting diseases in the early stage using initial notes is challenging due to limited information. To address this, a text-numerical hybrid method is developed to improve disease prediction accuracy. The method identifies "Reliably predicted diseases (RPD)" that can be robustly predicted in the NLP and Random Forest models even if there are missing values in the numerical data or the amount of text data is small. Results show that, among the predicted disease groups of the two models, diseases matching the RPD are preferentially adopted and integrated. Precision@10 reveals that our developed method has a relatively higher accuracy of 67.0% than the traditional NLP model.

使用大规模临床真实世界数据的文本-数字混合模型进行早期疾病预测。
为了帮助医生预测疾病,大多数自然语言处理(NLP)模型都将重点放在电子病历中的病程记录上,这些记录包含从患者诊断的初始阶段到出院的最后阶段的完整描述。然而,由于信息有限,利用初始记录在早期阶段准确预测疾病是具有挑战性的。为了解决这一问题,提出了一种文本-数值混合方法来提高疾病预测的准确性。该方法确定了“可靠预测疾病(RPD)”,即使在数值数据中存在缺失值或文本数据量很小的情况下,也可以在NLP和随机森林模型中进行稳健预测。结果表明,在两种模型预测的疾病群中,优先采用与RPD匹配的疾病进行整合。Precision@10显示,我们开发的方法比传统的NLP模型具有67.0%的相对较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信