Meng Du, Hanjing Liao, Manjing Huang, Yaqin Wang, Zongjie Zhao, Zhixiang Zhu, Jun Li
{"title":"[Study on the gene expression and regulation mechanisms of fibroblasts in acute inflammatory response].","authors":"Meng Du, Hanjing Liao, Manjing Huang, Yaqin Wang, Zongjie Zhao, Zhixiang Zhu, Jun Li","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Objective To investigate the gene expression and regulatory mechanisms of mouse embryonic fibroblasts (MEFs) under inflammatory conditions, aiming to elucidate the role of MEFs in inflammatory responses and provide a foundation for discovering anti-inflammatory drugs that act by modulating MEF function. Methods MEFs cultured in vitro were divided into the following groups: lipopolysaccharides (LPS)-treated group, inflammatory conditioned medium (CM)-treated group, and control group, which were treated with LPS, CM, and equal volume solvent, respectively. Transcriptome sequencing was used to analyze the effects of two stimuli on gene expression profile of MEFs. Real time fluorescence quantitative PCR (RT-qPCR) was employed to verify the transcription levels of highly expressed genes of MEFs induced by CM. ELISA was performed to determine the concentrations of cytokines in cell supernatants. Finally, the regulatory effects of CM on the activation of signaling pathways in MEFs were analyzed by immunoblotting. Results Transcriptome analysis showed that both LPS and CM induced the transcription of a large number of genes in MEFs. Compared with LPS, CM potentiated the mRNA transcription of some acute phase proteins, inflammatory cytokines, chemokines, matrix metalloproteinases (MMP), prostaglandin synthetases, and colony-stimulating factors. The transcriptome analysis was verified by RT-qPCR. The results of ELISA showed that CM treatment significantly increased the secretion of interleukin 6 (IL-6), C-C motif chemokine ligand (CCL2), and C-X-C motif chemokine ligand (CXCL1) by MEFs compared with LPS. Mechanism study showed that both LPS and CM induced the phosphorylation of nuclear factor-κB p65 (NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), extracellular regulated protein kinases 1/2 (ERK1/2), and TANK-binding kinase (TBK) in MEFs, and CM strongly stimulated the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in MEFs. Conclusion Both LPS and CM can induce transcription and protein secretion of various inflammation-related genes in MEFs. CM can partly enhance LPS-induced activation of MEFs, and the mechanism may be related to the enhancement effect of CM on the activation STAT3 signaling pathway.</p>","PeriodicalId":61378,"journal":{"name":"细胞与分子免疫学杂志","volume":"41 5","pages":"391-397"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"细胞与分子免疫学杂志","FirstCategoryId":"3","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective To investigate the gene expression and regulatory mechanisms of mouse embryonic fibroblasts (MEFs) under inflammatory conditions, aiming to elucidate the role of MEFs in inflammatory responses and provide a foundation for discovering anti-inflammatory drugs that act by modulating MEF function. Methods MEFs cultured in vitro were divided into the following groups: lipopolysaccharides (LPS)-treated group, inflammatory conditioned medium (CM)-treated group, and control group, which were treated with LPS, CM, and equal volume solvent, respectively. Transcriptome sequencing was used to analyze the effects of two stimuli on gene expression profile of MEFs. Real time fluorescence quantitative PCR (RT-qPCR) was employed to verify the transcription levels of highly expressed genes of MEFs induced by CM. ELISA was performed to determine the concentrations of cytokines in cell supernatants. Finally, the regulatory effects of CM on the activation of signaling pathways in MEFs were analyzed by immunoblotting. Results Transcriptome analysis showed that both LPS and CM induced the transcription of a large number of genes in MEFs. Compared with LPS, CM potentiated the mRNA transcription of some acute phase proteins, inflammatory cytokines, chemokines, matrix metalloproteinases (MMP), prostaglandin synthetases, and colony-stimulating factors. The transcriptome analysis was verified by RT-qPCR. The results of ELISA showed that CM treatment significantly increased the secretion of interleukin 6 (IL-6), C-C motif chemokine ligand (CCL2), and C-X-C motif chemokine ligand (CXCL1) by MEFs compared with LPS. Mechanism study showed that both LPS and CM induced the phosphorylation of nuclear factor-κB p65 (NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), extracellular regulated protein kinases 1/2 (ERK1/2), and TANK-binding kinase (TBK) in MEFs, and CM strongly stimulated the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in MEFs. Conclusion Both LPS and CM can induce transcription and protein secretion of various inflammation-related genes in MEFs. CM can partly enhance LPS-induced activation of MEFs, and the mechanism may be related to the enhancement effect of CM on the activation STAT3 signaling pathway.