Development of a Human Evaluation Framework and Correlation with Automated Metrics for Natural Language Generation of Medical Diagnoses.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Emma Croxford, Yanjun Gao, Brian Patterson, Daniel To, Samuel Tesch, Dmitriy Dligach, Anoop Mayampurath, Matthew M Churpek, Majid Afshar
{"title":"Development of a Human Evaluation Framework and Correlation with Automated Metrics for Natural Language Generation of Medical Diagnoses.","authors":"Emma Croxford, Yanjun Gao, Brian Patterson, Daniel To, Samuel Tesch, Dmitriy Dligach, Anoop Mayampurath, Matthew M Churpek, Majid Afshar","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In the evolving landscape of clinical Natural Language Generation (NLG), assessing abstractive text quality remains challenging, as existing methods often overlook generative task complexities. This work aimed to examine the current state of automated evaluation metrics in NLG in healthcare. To have a robust and well-validated baseline with which to examine the alignment of these metrics, we created a comprehensive human evaluation framework. Employing ChatGPT-3.5-turbo generative output, we correlated human judgments with each metric. None of the metrics demonstrated high alignment; however, the SapBERT score-a Unified Medical Language System (UMLS)- showed the best results. This underscores the importance of incorporating domain-specific knowledge into evaluation efforts. Our work reveals the deficiency in quality evaluations for generated text and introduces our comprehensive human evaluation framework as a baseline. Future efforts should prioritize integrating medical knowledge databases to enhance the alignment of automated metrics, particularly focusing on refining the SapBERT score for improved assessments.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"309-318"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the evolving landscape of clinical Natural Language Generation (NLG), assessing abstractive text quality remains challenging, as existing methods often overlook generative task complexities. This work aimed to examine the current state of automated evaluation metrics in NLG in healthcare. To have a robust and well-validated baseline with which to examine the alignment of these metrics, we created a comprehensive human evaluation framework. Employing ChatGPT-3.5-turbo generative output, we correlated human judgments with each metric. None of the metrics demonstrated high alignment; however, the SapBERT score-a Unified Medical Language System (UMLS)- showed the best results. This underscores the importance of incorporating domain-specific knowledge into evaluation efforts. Our work reveals the deficiency in quality evaluations for generated text and introduces our comprehensive human evaluation framework as a baseline. Future efforts should prioritize integrating medical knowledge databases to enhance the alignment of automated metrics, particularly focusing on refining the SapBERT score for improved assessments.

医学诊断自然语言生成的人类评估框架及其与自动度量的关联。
在临床自然语言生成(NLG)不断发展的环境中,评估抽象文本质量仍然具有挑战性,因为现有方法经常忽略生成任务的复杂性。这项工作旨在检查医疗保健中NLG自动评估指标的现状。为了有一个健壮的和经过良好验证的基线来检查这些度量的一致性,我们创建了一个全面的人类评估框架。使用chatgpt -3.5涡轮生成输出,我们将人类判断与每个指标关联起来。没有一个指标显示出高度的一致性;然而,统一医学语言系统(UMLS)的SapBERT评分显示出最好的结果。这强调了将特定领域的知识纳入评估工作的重要性。我们的工作揭示了生成文本质量评估的不足,并介绍了我们的综合人类评估框架作为基线。未来的工作应优先考虑整合医学知识数据库,以增强自动化度量标准的一致性,特别是侧重于改进SapBERT评分以改进评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信