Development of a Flexible Chain of Thought Framework for Automated Routing of Patient Portal Messages.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Michael Gao, Kartik Pejavara, Suresh Balu, Ricardo Henao
{"title":"Development of a Flexible Chain of Thought Framework for Automated Routing of Patient Portal Messages.","authors":"Michael Gao, Kartik Pejavara, Suresh Balu, Ricardo Henao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The increase in utilization of patient portal messages has imposed a considerable burden on healthcare providers, contributing to an increased incidence of provider burnout. This study introduces a framework for leveraging Large Language Models (LLMs) and Chain-of-Thought (CoT) prompting in order to automatically categorize and route messages to their appropriate location. The modeling framework, which utilizes gold standard annotations from triage nurses, not only facilitates the dynamic adaptation of the model to evolving healthcare workflows and emerging edge-case scenarios, but also significantly improves the model's classification accuracy compared to traditional zero-shot methods. In addition, the framework allows for flexibility in its task and continuous improvement via annotation of exemplar messages. The model is able to accurately categorize messages in an automated fashion, which has potential to dramatically ease the burden on providers and provide faster and safer responses to patients. This framework can also be readily extended to work in a variety of clinical and documentation settings.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"443-452"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in utilization of patient portal messages has imposed a considerable burden on healthcare providers, contributing to an increased incidence of provider burnout. This study introduces a framework for leveraging Large Language Models (LLMs) and Chain-of-Thought (CoT) prompting in order to automatically categorize and route messages to their appropriate location. The modeling framework, which utilizes gold standard annotations from triage nurses, not only facilitates the dynamic adaptation of the model to evolving healthcare workflows and emerging edge-case scenarios, but also significantly improves the model's classification accuracy compared to traditional zero-shot methods. In addition, the framework allows for flexibility in its task and continuous improvement via annotation of exemplar messages. The model is able to accurately categorize messages in an automated fashion, which has potential to dramatically ease the burden on providers and provide faster and safer responses to patients. This framework can also be readily extended to work in a variety of clinical and documentation settings.

一个灵活的思想链框架的开发,用于患者门户消息的自动路由。
患者门户消息使用率的增加给医疗保健提供者带来了相当大的负担,导致提供者倦怠的发生率增加。本研究引入了一个框架,用于利用大型语言模型(llm)和思维链(CoT)提示,以便自动对消息进行分类并将其路由到适当的位置。该建模框架利用了来自分诊护士的金标准注释,不仅促进了模型对不断发展的医疗工作流程和新兴边缘情况的动态适应,而且与传统的零采样方法相比,还显著提高了模型的分类精度。此外,该框架允许其任务的灵活性,并通过范例消息的注释进行持续改进。该模型能够以自动化的方式准确地对信息进行分类,这有可能极大地减轻提供者的负担,并为患者提供更快、更安全的响应。这个框架也可以很容易地扩展到各种临床和文件设置的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信