Deciphering the role of nicotinamide metabolism and melanin-related genes in acute myocardial infarction: a machine learning approach integrating bioinformatics analysis.
{"title":"Deciphering the role of nicotinamide metabolism and melanin-related genes in acute myocardial infarction: a machine learning approach integrating bioinformatics analysis.","authors":"Jun Li, Chao Li, Tao Qian","doi":"10.4196/kjpp.24.431","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myocardial infarction (AMI) represents a significant global mortality factor. Alterations in nicotinamide metabolism within the myocardium post-AMI can influence the progression of the condition. Additionally, melanin plays a crucial role in nicotinamide metabolism and exhibits anti-inflammatory properties. Nevertheless, the diagnostic biomarkers for AMI that are based on nicotinamide metabolism and melanin-associated genes remain poorly defined. In this study, the AMI transcriptomic data from the Gene Expression Omnibus were analyzed to identify differentially expressed genes (DEGs) intersecting with nicotinamide metabolism and melatonin-related genes. Machine learning algorithms, including RandomForest, least absolute shrinkage and selection operator, and support vector machine-recursive feature elimination, were applied to select feature genes. Diagnostic markers were further evaluated based on area under the curve from receiver operating characteristic analysis. We identified 14 candidate genes, refined to 4 key genes, with NAMPT and BST1 ultimately selected as diagnostic biomarkers. These were used to classify AMI into two molecular subtypes. Immune landscape analysis revealed increased infiltration of monocytes, neutrophils, macrophages, and parainflammation in AMI. Enrichment analyses showed DEGs were mainly involved in innate immune response and cytokine production. Additionally, hsa-miR-34a-5p and hsa-miR-181b-5p were identified as potential regulators of NAMPT and BST1. In summary, NAMPT and BST1 are promising diagnostic biomarkers associated with nicotinamide metabolism and melatonin in AMI. The molecular subtyping based on these genes will enhance the management and hierarchical treatment of AMI, offering significant implications for clinical diagnosis and therapeutic strategies.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"521-532"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Physiology & Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4196/kjpp.24.431","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute myocardial infarction (AMI) represents a significant global mortality factor. Alterations in nicotinamide metabolism within the myocardium post-AMI can influence the progression of the condition. Additionally, melanin plays a crucial role in nicotinamide metabolism and exhibits anti-inflammatory properties. Nevertheless, the diagnostic biomarkers for AMI that are based on nicotinamide metabolism and melanin-associated genes remain poorly defined. In this study, the AMI transcriptomic data from the Gene Expression Omnibus were analyzed to identify differentially expressed genes (DEGs) intersecting with nicotinamide metabolism and melatonin-related genes. Machine learning algorithms, including RandomForest, least absolute shrinkage and selection operator, and support vector machine-recursive feature elimination, were applied to select feature genes. Diagnostic markers were further evaluated based on area under the curve from receiver operating characteristic analysis. We identified 14 candidate genes, refined to 4 key genes, with NAMPT and BST1 ultimately selected as diagnostic biomarkers. These were used to classify AMI into two molecular subtypes. Immune landscape analysis revealed increased infiltration of monocytes, neutrophils, macrophages, and parainflammation in AMI. Enrichment analyses showed DEGs were mainly involved in innate immune response and cytokine production. Additionally, hsa-miR-34a-5p and hsa-miR-181b-5p were identified as potential regulators of NAMPT and BST1. In summary, NAMPT and BST1 are promising diagnostic biomarkers associated with nicotinamide metabolism and melatonin in AMI. The molecular subtyping based on these genes will enhance the management and hierarchical treatment of AMI, offering significant implications for clinical diagnosis and therapeutic strategies.
期刊介绍:
The Korean Journal of Physiology & Pharmacology (Korean J. Physiol. Pharmacol., KJPP) is the official journal of both the Korean Physiological Society (KPS) and the Korean Society of Pharmacology (KSP). The journal launched in 1997 and is published bi-monthly in English. KJPP publishes original, peer-reviewed, scientific research-based articles that report successful advances in physiology and pharmacology. KJPP welcomes the submission of all original research articles in the field of physiology and pharmacology, especially the new and innovative findings. The scope of researches includes the action mechanism, pharmacological effect, utilization, and interaction of chemicals with biological system as well as the development of new drug targets. Theoretical articles that use computational models for further understanding of the physiological or pharmacological processes are also welcomed. Investigative translational research articles on human disease with an emphasis on physiology or pharmacology are also invited. KJPP does not publish work on the actions of crude biological extracts of either unknown chemical composition (e.g. unpurified and unvalidated) or unknown concentration. Reviews are normally commissioned, but consideration will be given to unsolicited contributions. All papers accepted for publication in KJPP will appear simultaneously in the printed Journal and online.