Comparative Analysis of Data Generation Techniques for Breast Cancer Research Using Artificial Intelligence.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Tia M Pope, Ahmad Patooghy
{"title":"Comparative Analysis of Data Generation Techniques for Breast Cancer Research Using Artificial Intelligence.","authors":"Tia M Pope, Ahmad Patooghy","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the use of ChatGPT to support clinical teams with limited expertise in generating synthetic data for breast cancer research. It assesses ChatGPT's application, focusing on effective prompting and best practices for creating high-fidelity synthetic data. The research compares the generated synthetic data to the Wisconsin Breast Cancer Dataset through statistical analysis, structural similarity metrics, and machine learning performance. Results indicate that the quality of prompts and generation techniques significantly affects the data's fidelity. The study highlights the critical role of prompt engineering and data synthesis techniques in producing accurate synthetic data for healthcare research, underscoring the need for precise prompts and generation methods to maintain data integrity in sensitive areas like cancer research.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"910-919"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099320/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the use of ChatGPT to support clinical teams with limited expertise in generating synthetic data for breast cancer research. It assesses ChatGPT's application, focusing on effective prompting and best practices for creating high-fidelity synthetic data. The research compares the generated synthetic data to the Wisconsin Breast Cancer Dataset through statistical analysis, structural similarity metrics, and machine learning performance. Results indicate that the quality of prompts and generation techniques significantly affects the data's fidelity. The study highlights the critical role of prompt engineering and data synthesis techniques in producing accurate synthetic data for healthcare research, underscoring the need for precise prompts and generation methods to maintain data integrity in sensitive areas like cancer research.

基于人工智能的乳腺癌研究数据生成技术比较分析。
本研究探讨了使用ChatGPT来支持专业知识有限的临床团队为乳腺癌研究生成合成数据。它评估了ChatGPT的应用程序,重点关注创建高保真合成数据的有效提示和最佳实践。该研究通过统计分析、结构相似性指标和机器学习性能,将生成的合成数据与威斯康星州乳腺癌数据集进行比较。结果表明,提示和生成技术的质量显著影响数据的保真度。该研究强调了即时工程和数据合成技术在为医疗保健研究生成准确合成数据方面的关键作用,强调了在癌症研究等敏感领域需要精确的提示和生成方法来保持数据完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信