Where do doctors disagree? Characterizing Decision Points for Safe Reinforcement Learning in Choosing Vasopressor Treatment.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Esther Brown, Shivam Raval, Alex Rojas, Jiayu Yao, Sonali Parbhoo, Leo A Celi, Siddharth Swaroop, Weiwei Pan, Finale Doshi-Velez
{"title":"Where do doctors disagree? Characterizing Decision Points for Safe Reinforcement Learning in Choosing Vasopressor Treatment.","authors":"Esther Brown, Shivam Raval, Alex Rojas, Jiayu Yao, Sonali Parbhoo, Leo A Celi, Siddharth Swaroop, Weiwei Pan, Finale Doshi-Velez","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In clinical settings, domain experts sometimes disagree on optimal treatment actions. These \"decision points\" must be comprehensively characterized, as they offer opportunities for Artificial Intelligence (AI) to provide statistically informed recommendations. To address this, we introduce a pipeline to investigate \"decision regions\", clusters of decision points, by training classifiers for prediction and applying clustering techniques to the classifier's embedding space. Our methodology includes: a robustness analysis confirming the topological stability of decision regions across diverse design parameters; an empirical study using the MIMIC-III database, focusing on the binary decision to administer vasopressors to hypotensive patients in the ICU; and an expert-validated summary of the decision regions' statistical attributes with novel clinical interpretations. We demonstrate that the topology of these decision regions remains stable across various design choices, reinforcing the reliability of our findings and generalizability of our approach. We encourage future work to extend this approach to other medical datasets.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"222-231"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099420/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical settings, domain experts sometimes disagree on optimal treatment actions. These "decision points" must be comprehensively characterized, as they offer opportunities for Artificial Intelligence (AI) to provide statistically informed recommendations. To address this, we introduce a pipeline to investigate "decision regions", clusters of decision points, by training classifiers for prediction and applying clustering techniques to the classifier's embedding space. Our methodology includes: a robustness analysis confirming the topological stability of decision regions across diverse design parameters; an empirical study using the MIMIC-III database, focusing on the binary decision to administer vasopressors to hypotensive patients in the ICU; and an expert-validated summary of the decision regions' statistical attributes with novel clinical interpretations. We demonstrate that the topology of these decision regions remains stable across various design choices, reinforcing the reliability of our findings and generalizability of our approach. We encourage future work to extend this approach to other medical datasets.

医生们在哪些方面存在分歧?选择血管加压药物治疗的安全强化学习决策点特征。
在临床环境中,领域专家有时对最佳治疗行动意见不一。这些“决策点”必须全面表征,因为它们为人工智能(AI)提供了提供统计信息建议的机会。为了解决这个问题,我们引入了一个管道来研究“决策区域”,决策点的聚类,通过训练分类器进行预测并将聚类技术应用于分类器的嵌入空间。我们的方法包括:鲁棒性分析,确认决策区域在不同设计参数中的拓扑稳定性;使用MIMIC-III数据库的实证研究,重点关注ICU低血压患者使用血管加压药物的二元决策;专家验证的决策区域统计属性总结,具有新颖的临床解释。我们证明了这些决策区域的拓扑结构在各种设计选择中保持稳定,从而加强了我们研究结果的可靠性和我们方法的可推广性。我们鼓励未来的工作将这种方法扩展到其他医疗数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信