Explaining unforeseen congruence relationships between PEND and POND partitions via an Atkin-Lehner involution.

IF 0.6 3区 数学 Q3 MATHEMATICS
Ramanujan Journal Pub Date : 2025-01-01 Epub Date: 2025-05-23 DOI:10.1007/s11139-025-01111-9
James A Sellers, Nicolas Allen Smoot
{"title":"Explaining unforeseen congruence relationships between PEND and POND partitions via an Atkin-Lehner involution.","authors":"James A Sellers, Nicolas Allen Smoot","doi":"10.1007/s11139-025-01111-9","DOIUrl":null,"url":null,"abstract":"<p><p>For the past several years, numerous authors have studied POD and PED partitions from a variety of perspectives. These are integer partitions wherein the odd parts must be distinct (in the case of POD partitions) or the even parts must be distinct (in the case of PED partitions). More recently, Ballantine and Welch were led to consider POND and PEND partitions, which are integer partitions wherein the odd parts <b>cannot</b> be distinct (in the case of POND partitions) or the even parts <b>cannot</b> be distinct (in the case of PEND partitions). Soon after, the first author proved the following results via elementary <i>q</i>-series identities and generating function manipulations, along with mathematical induction: For all <math><mrow><mi>α</mi> <mo>≥</mo> <mn>1</mn></mrow> </math> and all <math><mrow><mi>n</mi> <mo>≥</mo> <mn>0</mn> <mo>,</mo></mrow> </math> <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><mrow><mspace></mspace> <mtext>pend</mtext> <mspace></mspace></mrow> <mfenced><msup><mn>3</mn> <mrow><mn>2</mn> <mi>α</mi> <mo>+</mo> <mn>1</mn></mrow> </msup> <mi>n</mi> <mo>+</mo> <mfrac><mrow><mn>17</mn> <mo>·</mo> <msup><mn>3</mn> <mrow><mn>2</mn> <mi>α</mi></mrow> </msup> <mo>-</mo> <mn>1</mn></mrow> <mn>8</mn></mfrac> </mfenced> </mrow> </mtd> <mtd><mrow><mo>≡</mo> <mn>0</mn> <mspace></mspace> <mo>(</mo> <mo>mod</mo> <mspace></mspace> <mn>3</mn> <mo>)</mo> <mo>,</mo> <mspace></mspace> <mtext>and</mtext></mrow> </mtd> </mtr> <mtr> <mtd><mrow><mrow></mrow> <mrow><mspace></mspace> <mtext>pond</mtext> <mspace></mspace></mrow> <mfenced><msup><mn>3</mn> <mrow><mn>2</mn> <mi>α</mi> <mo>+</mo> <mn>1</mn></mrow> </msup> <mi>n</mi> <mo>+</mo> <mfrac><mrow><mn>23</mn> <mo>·</mo> <msup><mn>3</mn> <mrow><mn>2</mn> <mi>α</mi></mrow> </msup> <mo>+</mo> <mn>1</mn></mrow> <mn>8</mn></mfrac> </mfenced> </mrow> </mtd> <mtd><mrow><mo>≡</mo> <mn>0</mn> <mspace></mspace> <mo>(</mo> <mo>mod</mo> <mspace></mspace> <mn>3</mn> <mo>)</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> where <math> <mrow><mrow><mspace></mspace> <mtext>pend</mtext> <mspace></mspace></mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </math> counts the number of PEND partitions of weight <i>n</i> and <math> <mrow><mrow><mspace></mspace> <mtext>pond</mtext> <mspace></mspace></mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </math> counts the number of POND partitions of weight <i>n</i>. In this work, we revisit these families of congruences, and we show a relationship between them via an Atkin-Lehner involution. From this relationship, we can show that, once one of the above families of congruences is known, the other follows immediately.</p>","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":"67 3","pages":"60"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ramanujan Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11139-025-01111-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For the past several years, numerous authors have studied POD and PED partitions from a variety of perspectives. These are integer partitions wherein the odd parts must be distinct (in the case of POD partitions) or the even parts must be distinct (in the case of PED partitions). More recently, Ballantine and Welch were led to consider POND and PEND partitions, which are integer partitions wherein the odd parts cannot be distinct (in the case of POND partitions) or the even parts cannot be distinct (in the case of PEND partitions). Soon after, the first author proved the following results via elementary q-series identities and generating function manipulations, along with mathematical induction: For all α 1 and all n 0 , pend 3 2 α + 1 n + 17 · 3 2 α - 1 8 0 ( mod 3 ) , and pond 3 2 α + 1 n + 23 · 3 2 α + 1 8 0 ( mod 3 ) where pend ( n ) counts the number of PEND partitions of weight n and pond ( n ) counts the number of POND partitions of weight n. In this work, we revisit these families of congruences, and we show a relationship between them via an Atkin-Lehner involution. From this relationship, we can show that, once one of the above families of congruences is known, the other follows immediately.

通过Atkin-Lehner对合解释PEND和POND分区之间不可预见的同余关系。
在过去的几年中,许多作者从不同的角度研究了POD和PED分区。这些是整数分区,其中奇数部分必须是不同的(在POD分区的情况下),或者偶数部分必须是不同的(在PED分区的情况下)。最近,Ballantine和Welch被引导考虑POND和PEND分区,它们是整数分区,其中奇数部分不能区分(在POND分区的情况下)或偶数部分不能区分(在PEND分区的情况下)。不久后,第一作者通过初等q级数恒等式和生成函数的操作,结合数学归纳法证明了以下结果:对于所有α≥1,所有n≥0 , 挂件3 2α+ 1 n + 17·3 2α- 1 8≡0 (mod 3),和池塘3 2α+ 1 n + 23·3 2α+ 1 8≡0 3 (mod)挂件(n)计数挂件分区的数量重量n和池塘(n)计数池分区的数量重量n。在这个工作中,我们重新审视这些家庭的刻画,我们通过Atkin-Lehner对合显示它们之间的关系。从这个关系中,我们可以证明,一旦上述同余族中的一个已知,另一个就会紧随其后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ramanujan Journal
Ramanujan Journal 数学-数学
CiteScore
1.40
自引率
14.30%
发文量
133
审稿时长
6-12 weeks
期刊介绍: The Ramanujan Journal publishes original papers of the highest quality in all areas of mathematics influenced by Srinivasa Ramanujan. His remarkable discoveries have made a great impact on several branches of mathematics, revealing deep and fundamental connections. The following prioritized listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interest: Hyper-geometric and basic hyper-geometric series (q-series) * Partitions, compositions and combinatory analysis * Circle method and asymptotic formulae * Mock theta functions * Elliptic and theta functions * Modular forms and automorphic functions * Special functions and definite integrals * Continued fractions * Diophantine analysis including irrationality and transcendence * Number theory * Fourier analysis with applications to number theory * Connections between Lie algebras and q-series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信