Comparison of seven machine learning models in hypertension classification using photoplethysmographic and anthropometric data.

Q3 Engineering
Alessandro Gentilin
{"title":"Comparison of seven machine learning models in hypertension classification using photoplethysmographic and anthropometric data.","authors":"Alessandro Gentilin","doi":"10.1080/03091902.2025.2506419","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an algorithm for classifying individuals into four hypertension categories (healthy, prehypertension, Stage 1, and Stage 2) using indices computed from photoplethysmographic (PPG) and anthropometric data. The dataset includes 219 individuals (115 women, 104 men, ages 21-86), with resting PPG signals, body mass index (BMI), age, weight, height, and resting heart rate. Key features (PPGAI, Ab, and Ad indices) were computed from the PPG signal. After dimensionality reduction through stepwise linear regression, the most informative predictors of hypertensive stages were identified for model training. Seven machine learning models, including Support Vector Machine (SVM), K-Nearest Neighbours, Logistic Regression, Random Forest, Naive Bayes, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, were evaluated using leave-one-out cross-validation and the most accurate one was selected for final classification. The Linear SVM showed the best performance, correctly classifying 71.3%, 67.1%, 38.2%, and 55% of healthy, prehypertensive, Stage 1, and Stage 2 subjects, respectively. However, in a preliminary screening scenario aimed at prompting clinical follow-up for positive cases, the algorithm flagged 76.5% of prehypertensive, 97.1% of Stage 1, and 100% of Stage 2 individuals as belonging to one of the three hypertensive categories. Nonetheless, additional training data are needed to improve the model's accuracy.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2025.2506419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an algorithm for classifying individuals into four hypertension categories (healthy, prehypertension, Stage 1, and Stage 2) using indices computed from photoplethysmographic (PPG) and anthropometric data. The dataset includes 219 individuals (115 women, 104 men, ages 21-86), with resting PPG signals, body mass index (BMI), age, weight, height, and resting heart rate. Key features (PPGAI, Ab, and Ad indices) were computed from the PPG signal. After dimensionality reduction through stepwise linear regression, the most informative predictors of hypertensive stages were identified for model training. Seven machine learning models, including Support Vector Machine (SVM), K-Nearest Neighbours, Logistic Regression, Random Forest, Naive Bayes, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, were evaluated using leave-one-out cross-validation and the most accurate one was selected for final classification. The Linear SVM showed the best performance, correctly classifying 71.3%, 67.1%, 38.2%, and 55% of healthy, prehypertensive, Stage 1, and Stage 2 subjects, respectively. However, in a preliminary screening scenario aimed at prompting clinical follow-up for positive cases, the algorithm flagged 76.5% of prehypertensive, 97.1% of Stage 1, and 100% of Stage 2 individuals as belonging to one of the three hypertensive categories. Nonetheless, additional training data are needed to improve the model's accuracy.

利用光容积脉搏波和人体测量数据进行高血压分类的7种机器学习模型比较。
本研究提出了一种算法,利用光容积脉搏波(PPG)和人体测量数据计算的指数,将个体分为四种高血压类别(健康、高血压前期、一期和二期)。该数据集包括219个人(115名女性,104名男性,年龄21-86岁),静息PPG信号、体重指数(BMI)、年龄、体重、身高和静息心率。关键特征(PPGAI, Ab和Ad指数)由PPG信号计算。通过逐步线性回归降维后,确定最具信息量的高血压分期预测因子用于模型训练。采用留一交叉验证对支持向量机(SVM)、k近邻、逻辑回归、随机森林、朴素贝叶斯、线性判别分析和二次判别分析等7种机器学习模型进行评估,并选择最准确的模型进行最终分类。线性支持向量机表现最好,对健康、高血压前期、1期和2期受试者的正确率分别为71.3%、67.1%、38.2%和55%。然而,在旨在促进阳性病例临床随访的初步筛选场景中,该算法将76.5%的高血压前期、97.1%的1期和100%的2期个体标记为属于三种高血压类型之一。尽管如此,还需要额外的训练数据来提高模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信